Direkt zum Inhalt
Suchergebnisse 1 - 30 von 42

Gültige Ziffern mit Zehnerpotenzen

Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel
Grundwissen

  • Manchmal ist die Angabe der Lösung mit der richtigen Anzahl der gültigen Ziffern nicht direkt möglich.
  • Die Umwandlung in eine größere Einheit ist eine Lösungsmöglichkeit.
  • Durch den Einsatz von Zehnerpotenzen kannst du die Anzahl der gültigen Ziffern immer richtig angeben.

Zum Artikel Zu den Aufgaben

Exponentialfunktionen auswerten

Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel
Grundwissen

  • Exponentialfunktionen haben die Form \(f(x)=a\cdot b^x\) bzw. mittels \(e\)-Funktion ausgedrückt \(f(x) = a \cdot e^{k \cdot x}\)
  • Aus Messwerten kannst du die zugrundeliegende Exponentialfunktion mittels exponentieller Regression ermitteln.
  • Bei Zerfallskurven, bei Absorptionskurven und bei Entladekurven von Kondensatoren handelt es sich um Exponentialfunktionen.

Zum Artikel Zu den Aufgaben

Zusammenfassen von Proportionalitäten

Grundwissen

  • Mehrere Proportionalitäten zu einer Größe kannst du zusammenfassen.
  • Sind z.B. die Größen \(a\) und \(b\) proportional zu \(y\), so ist auch \(a\cdot b\) proportional zu \(y\).
  • Umgekehrte Proportionalitäten kannst du ebenso zusammenfassen.

Zum Artikel
Grundwissen

  • Mehrere Proportionalitäten zu einer Größe kannst du zusammenfassen.
  • Sind z.B. die Größen \(a\) und \(b\) proportional zu \(y\), so ist auch \(a\cdot b\) proportional zu \(y\).
  • Umgekehrte Proportionalitäten kannst du ebenso zusammenfassen.

Zum Artikel Zu den Aufgaben

SI-Basisgrößen und -einheiten

Grundwissen
Grundwissen

Lösen von Gleichungen - Fortführung

Grundwissen
Grundwissen

Rechenaufgaben

Grundwissen

  • Bei Rechenaufgaben in der Physik hilft ein strukturiertes Vorgehen.
  • Notiere zuerst die gegebenen und gesuchten Größen und rechne jeweils in die Basiseinheit um.
  • Stelle die Formel zuerst allgemein nach der gesuchten Größe um und setze erst dann die gegebenen Größen ein.

Zum Artikel
Grundwissen

  • Bei Rechenaufgaben in der Physik hilft ein strukturiertes Vorgehen.
  • Notiere zuerst die gegebenen und gesuchten Größen und rechne jeweils in die Basiseinheit um.
  • Stelle die Formel zuerst allgemein nach der gesuchten Größe um und setze erst dann die gegebenen Größen ein.

Zum Artikel Zu den Aufgaben

Erstellen von Diagrammen

Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel
Grundwissen

  • Für ein Diagramm benötigst du zunächst zusammengehörige Messwerte zweier Größen (meist aus einem Experiment).
  • Die im Diagramm zuerst genannte Größe kommt auf die Rechtswertachse, die zweite Größe auf die Hochwertachse.
  • Durch die Messpunkte wird im Diagramm eine möglichst glatten Kurve ohne Ecken und Knicke gezeichnet, wobei nicht alle Punkte genau auf der Kurve liegen müssen (Messfehler).

Zum Artikel Zu den Aufgaben

Auswerten von Diagrammen - Einführung

Grundwissen

  • Messwerte werden zur Auswertung oft in ein Diagramm eingetragen. Je nach Lage wird dann eine Ausgleichsgerade oder eine Kurve im Diagramm ergänzt.
  • Mit Hilfe der Ausgleichsgeraden oder Kurve können weitere Wertepaare im Bereich der Messwerte bestimmt (interpoliert) werden.
  • Eine Verlängerung der Ausgleichsgeraden oder Kurve deutlich über den Bereich der Messwerte hinaus ist meist nicht zulässig.

Zum Artikel
Grundwissen

  • Messwerte werden zur Auswertung oft in ein Diagramm eingetragen. Je nach Lage wird dann eine Ausgleichsgerade oder eine Kurve im Diagramm ergänzt.
  • Mit Hilfe der Ausgleichsgeraden oder Kurve können weitere Wertepaare im Bereich der Messwerte bestimmt (interpoliert) werden.
  • Eine Verlängerung der Ausgleichsgeraden oder Kurve deutlich über den Bereich der Messwerte hinaus ist meist nicht zulässig.

Zum Artikel Zu den Aufgaben

Lösen von Gleichungen - Einführung

Grundwissen
Grundwissen

Physikalische Konstanten

Grundwissen
Grundwissen

Umgekehrte Proportionalität

Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben

Zehnerpotenzen - Präfixe

Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel
Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel Zu den Aufgaben

Potenzschreibweise

Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel
Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel Zu den Aufgaben

Direkte Proportionalität

Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben

Größen, Basisgrößen und abgeleitete Größen

Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel Zu den Aufgaben

Genauigkeitsangaben und gültige Ziffern

Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel
Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel Zu den Aufgaben

Umgang mit dem Taschenrechner

Grundwissen
Grundwissen

Der Transistor-Effekt

Grundwissen

  • Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben

Transistor-Formalitäten

Grundwissen

  • Einfache Transistoren bestehen drei abwechselnd p- und n-dotierten Halbleiterschichten.
  • Man unterscheidet zwischen npn-Transistor und pnp-Transistor - meistens behandelt man jedoch npn-Transistoren.
  • Die drei Teile nennt man Kollektor (C), Basis (B) und Emitter (E).
  • Es gibt drei Schaltungsarten eines Transistors: Emitterschaltung, Kollektorschaltung und Basisschaltung. In der Praxis spielt die Emitterschaltung eine große Rolle.

Zum Artikel
Grundwissen

  • Einfache Transistoren bestehen drei abwechselnd p- und n-dotierten Halbleiterschichten.
  • Man unterscheidet zwischen npn-Transistor und pnp-Transistor - meistens behandelt man jedoch npn-Transistoren.
  • Die drei Teile nennt man Kollektor (C), Basis (B) und Emitter (E).
  • Es gibt drei Schaltungsarten eines Transistors: Emitterschaltung, Kollektorschaltung und Basisschaltung. In der Praxis spielt die Emitterschaltung eine große Rolle.

Zum Artikel Zu den Aufgaben

Technik der Dotierung

Grundwissen

  • Halbleiter werden meist durch ein Diffusionsverfahren oder durch Implantation (Einschuss) mit Fremdatomen dotiert.

Zum Artikel
Grundwissen

  • Halbleiter werden meist durch ein Diffusionsverfahren oder durch Implantation (Einschuss) mit Fremdatomen dotiert.

Zum Artikel Zu den Aufgaben

Eigenleitung im Siliziumkristall

Grundwissen

  • Bei tiefen Temperaturen sind Halbleiter Isolatoren.
  • Bei Energiezufuhr z.B. durch Erwärmung werden Elektronen aus ihren Paarbindungen gelöst - es entstehen Leitungselektronen und Löcher.
  • Legt man eine äußere Spannung an, kommt es zur sogn Eigenleitung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei tiefen Temperaturen sind Halbleiter Isolatoren.
  • Bei Energiezufuhr z.B. durch Erwärmung werden Elektronen aus ihren Paarbindungen gelöst - es entstehen Leitungselektronen und Löcher.
  • Legt man eine äußere Spannung an, kommt es zur sogn Eigenleitung.

Zum Artikel Zu den Aufgaben

Dotierte Halbleiter

Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben

Stromrichtige und Spannungsrichtige Messung

Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben

p-n-Übergang - Halbleiterdiode

Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben

Leuchtdioden (LED) - Einführung

Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben

Silizium-Solarzellen

Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassische Silizium-Solarzellen bestehen aus einer n-dotierten und einer p-dotierten Schicht. Am Übergang bildet sich eine sog. Raumladungszone.
  • Einfallendes Licht löst in dieser Raumladungszone Elektronen von Atomen (innerer Fotoeffekt).
  • Der Wirkungsgrad von Solarzellen liegt aktuell bei 13% - 48%.

Zum Artikel Zu den Aufgaben

Interferenzfähigkeit von Photonen im Quantenradierer

Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben
Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben

Welle - Teilchen - Dualismus

Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel
Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel Zu den Aufgaben

Statistische Deutung

Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel
Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel Zu den Aufgaben