Direkt zum Inhalt
Suchergebnisse 121 - 150 von 1278

Energieaufnahme durch Stoßanregung - Prinzip (Animation)

Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme eines Atoms am Beispiel eines unelastischen Stoßes des Atoms mit einem Elektron (Stoßanregung).

Zum Download
Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme eines Atoms am Beispiel eines unelastischen Stoßes des Atoms mit einem Elektron (Stoßanregung).

Zum Download

Energieaufnahme durch Stoßanregung - Varianten (Animation)

Download ( Simulation )

Die Animation zeigt verschiedene Arten von Stößen eines Atoms mit einem Elektron in Abhängigkeit von der kinetischen Energie des Elektrons.

Zum Download
Download ( Simulation )

Die Animation zeigt verschiedene Arten von Stößen eines Atoms mit einem Elektron in Abhängigkeit von der kinetischen Energie des Elektrons.

Zum Download

Energieaufnahme durch Absorption - Prinzip (Animation)

Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme (Anregung) eines Atoms durch die Absorption eines Photons.

Zum Download
Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme (Anregung) eines Atoms durch die Absorption eines Photons.

Zum Download

Energieaufnahme durch Absorption - Varianten (Animation)

Download ( Simulation )

Die Animation zeigt verschiedene Arten des Aufeinandertreffens eines Atoms mit einem Photon in Abhängigkeit von der Energie des Photons.

Zum Download
Download ( Simulation )

Die Animation zeigt verschiedene Arten des Aufeinandertreffens eines Atoms mit einem Photon in Abhängigkeit von der Energie des Photons.

Zum Download

Energieabgabe durch Emission - Prinzip (Animation)

Download ( Simulation )

Die Animation zeigt das Prinzip der Energieabgabe eines Atoms durch die Emission eines Photons.

Zum Download
Download ( Simulation )

Die Animation zeigt das Prinzip der Energieabgabe eines Atoms durch die Emission eines Photons.

Zum Download

Energieabgabe durch Emission - Varianten (Animation)

Download ( Simulation )

Die Animation zeigt verschiedene Möglichkeiten der Energieabgabe eines Atoms durch Emission eines oder mehrerer Photonen.

Zum Download
Download ( Simulation )

Die Animation zeigt verschiedene Möglichkeiten der Energieabgabe eines Atoms durch Emission eines oder mehrerer Photonen.

Zum Download

Spektren - Emissionsspektren (Animation)

Download ( Simulation )

Die Animation zeigt die Emissionsspektren verschiedener Elemente und einer Kohlebogenlampe. This work by Andrew Duffy is licensed under a Creative…

Zum Download
Download ( Simulation )

Die Animation zeigt die Emissionsspektren verschiedener Elemente und einer Kohlebogenlampe. This work by Andrew Duffy is licensed under a Creative…

Zum Download

Spektren - Absorptionsspektren (Animation)

Download ( Simulation )

Die Animation zeigt die Absorptionsspektren verschiedener Elemente. This work by Andrew Duffy is licensed under a Creative Commons…

Zum Download
Download ( Simulation )

Die Animation zeigt die Absorptionsspektren verschiedener Elemente. This work by Andrew Duffy is licensed under a Creative Commons…

Zum Download

Energiezustände von Atomen - Festlegung des Nullniveaus (Standbild)

Download ( Simulation )

Die Abbildung zeigt die Festlegung des Nullniveaus der Energieachse durch die Energie des einfach ionisierten Atoms.

Zum Download
Download ( Simulation )

Die Abbildung zeigt die Festlegung des Nullniveaus der Energieachse durch die Energie des einfach ionisierten Atoms.

Zum Download

Energiezustände von Atomen - Energieachse (Standbild)

Download ( Simulation )

Die Abbildung zeigt die abstrakte Darstellung eines Atoms als Kugel mit einer vertikal orientierten Energieachse.

Zum Download
Download ( Simulation )

Die Abbildung zeigt die abstrakte Darstellung eines Atoms als Kugel mit einer vertikal orientierten Energieachse.

Zum Download

Energiezustände von Atomen - Lage des Grundzustands (Standbild)

Download ( Simulation )

Die Abildung zeigt die Lage der Energie des Grundzustands auf der Energieachse eines Atoms.

Zum Download
Download ( Simulation )

Die Abildung zeigt die Lage der Energie des Grundzustands auf der Energieachse eines Atoms.

Zum Download

Energiezustände von Atomen - Termschema (Animation)

Download ( Simulation )

Die Animation zeigt das Termschema eines Atoms in einer abstrakten Darstellung des Atoms.

Zum Download
Download ( Simulation )

Die Animation zeigt das Termschema eines Atoms in einer abstrakten Darstellung des Atoms.

Zum Download

MACH-ZEHNDER-Interferometer (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Interferenzfähigkeit von Photonen im Quantenradierer

Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben
Grundwissen

Quantenobjekte besitzen sowohl Welleneigenschaften wie Interferenzfähigkeit, als auch Teilcheneigenschaften wie Unteilbarkeit. Dies kann am Mach-Zehnder-Interferometer verdeutlicht werden:

  • Ob im Interferometer Interferenz auftritt, hängt davon ab, ob der Lichtweg eines Photons eindeutig bestimmbar ist.
  • Wenn einem Photon im Interferometer ein eindeutiger Weg zugeordnet werden kann, tritt keine Interferenz auf.
  • Wenn einem Photon im Interferometer mehrere Wege zugeordnet werden können, tritt Interferenz auf.
  • Die Zuordnung von Lichtwegen kann auch hinter dem Interferometer noch rückgängig gemacht werden ("Quantenradierer")

Zum Artikel Zu den Aufgaben

Freier Fall - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Freien Fall (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene Diagramme.

Zum Download
Download ( Animationen )

Die Animation zeigt einen Freien Fall (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene Diagramme.

Zum Download

Wurf nach unten - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene…

Zum Download
Download ( Animationen )

Die Animation zeigt einen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und verschiedene…

Zum Download

Wurf nach oben ohne Anfangshöhe - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Wurf nach oben ohne Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download
Download ( Animationen )

Die Animation zeigt einen Wurf nach oben ohne Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download

Wurf nach oben mit Anfangshöhe - Grundwissen (Animation)

Download ( Animationen )

Die Animation zeigt einen Wurf nach oben mit Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download
Download ( Animationen )

Die Animation zeigt einen Wurf nach oben mit Anfangshöhe (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download

Wurf nach oben mit Anfangshöhe

Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).

Zum Artikel Zu den Aufgaben

Schräger Wurf nach unten (Animation)

Download ( Animationen )

Die Animation zeigt einen schrägen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download
Download ( Animationen )

Die Animation zeigt einen schrägen Wurf nach unten (auch als Stroboskopaufnahme), die wichtigsten Größen zur Beschreibung der Bewegung und…

Zum Download

Schräger Wurf nach unten

Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
  • Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - aperiodischer Grenzfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Federpendel stark gedämpft - Kriechfall (Theorie)

Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel
Ausblick

  • Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
  • Die Differentialgleichung \((*)\) für die Elongation \(x(t)\) des Körpers wird dann gelöst durch die Funktion \(x(t) = \hat{x} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{x}=x_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{D}{m}}\) und \(\delta = \frac{k}{2 \cdot m}\)

Zum Artikel Zu den Aufgaben

Fallschirmsprung (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Fall mit STOKES-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit STOKES-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit STOKES-Reibung (Animation)

Download ( Animationen )

Die Animation zeigt den Fall eines Körpers durch ein Medium mit STOKES-Reibung.

Zum Download
Download ( Animationen )

Die Animation zeigt den Fall eines Körpers durch ein Medium mit STOKES-Reibung.

Zum Download

Fall mit NEWTON-Reibung (Modellbildung)

Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel
Ausblick

  • Auf Basis einer geeigneten Modellierung lässt sich der Fall eines Körpers mit NEWTON-Reibung mit Hilfe der Methode der kleinen Schritte simulieren.

Zum Artikel Zu den Aufgaben

Fall mit NEWTON-Reibung (Animation)

Download ( Simulation )

Die Animation zeigt den Fall eines Körpers durch ein Medium mit NEWTON-Reibung.

Zum Download
Download ( Simulation )

Die Animation zeigt den Fall eines Körpers durch ein Medium mit NEWTON-Reibung.

Zum Download

Doppelspalt - Intensitätsverteilung

Ausblick
Ausblick

Vielfachspalt und Gitter - Intensitätsverteilung

Ausblick
Ausblick