Direkt zum Inhalt
Suchergebnisse 31 - 60 von 330

Potenzschreibweise

Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel
Grundwissen

  • Sehr große und sehr kleine Zahlen kannst du mithilfe von Zehnerpotenzen übersichtlich darstellen.
  • Beispiele: \(13000000=1{,}3\cdot 10^7\) und \(0{,}0000123=1{,}23\cdot 10^{-5}\)

Zum Artikel Zu den Aufgaben

Direkte Proportionalität

Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander direkt proportionalen Größen gehört zum Doppelten, Dreifachen, . . . n-fachen der Größe \(x\) das Doppelte, Dreifache, . . .n-fache der Größe \(y\).
  • Zwei zueinander direkt proportionale Größen sind quotientengleich. Den Quotienten \(\frac{y}{x}\) nennt man die Proportionalitätskonstante (bzw. den Proportionalitätsfaktor).
  • Sind zwei Größen zueinander direkt proportional, so ergibt ihre Darstellung in einem Diagramm eine Halbgerade durch den Ursprung.

Zum Artikel Zu den Aufgaben

Größen, Basisgrößen und abgeleitete Größen

Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus einem Formelzeichen, einer Maßzahl und einer Maßeinheit. Beispiel: \(l=5{,}0\,\rm{m}\)
  • Es gibt sieben Basisgrößen über die alle anderen Größen definiert werden: Zeit, Länge, Masse, Stromstärke, Temperatur, Stoffmenge und Lichtstärke.
  • Die Einheit einer abgeleiteten Größe ergibt sich aus Rechnung mit den Einheiten der zugrundeliegenden Größen, z.B. beim Flächeninhalt: \(\left[ A \right] = \left[ l \right] \cdot \left[ b \right] = 1{\rm{m}} \cdot {\rm{m}} = 1{{\rm{m}}^{\rm{2}}}\)

Zum Artikel Zu den Aufgaben

Genauigkeitsangaben und gültige Ziffern

Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel
Grundwissen

  • (Gemessene) physikalische Größen sind in der Regel mit Unsicherheit verbunden.
  • Die Zahl der gültigen Ziffern ergibt sich durch Zählung aller Stellen ab der ersten von Null verschiedenen Ziffer nach rechts.
  • Die Größe mit den wenigsten gültigen Ziffern bestimmt mit ihrer Anzahl an gültigen Ziffern auch die Anzahl der gültigen Ziffern bei der Berechnung eines Produktes oder Quotienten aus mehreren Größen.
  • Manchmal muss du Zehnerpotenzen verwenden, um die Anzahl der gültigen Ziffern korrekt anzugeben.

Zum Artikel Zu den Aufgaben

Umgang mit dem Taschenrechner

Grundwissen
Grundwissen

Erstellen von Stroboskopaufnahmen

Versuche
Versuche

Modellbildung für Unterrichtende

Ausblick
Ausblick

Vorlesung zum Thema physikalische Einheiten

Weblink

Für Fortgeschrittene und besonders Interessierte: Vorlesung mit weiterführenden Inhalten zum Thema "SI-Basisgrößen und -einheiten".
Das Video stammt von Prof. Dr. Kohl von der Hochschule Koblenz.

Zum externen Weblink
Weblink

Für Fortgeschrittene und besonders Interessierte: Vorlesung mit weiterführenden Inhalten zum Thema "SI-Basisgrößen und -einheiten".
Das Video stammt von Prof. Dr. Kohl von der Hochschule Koblenz.

Zum externen Weblink

Tipps und Tricks

Allgemeines und Hilfsmittel

  • Wie rundet man in der Physik eigentlich korrekt?
  • Wie wertet man eine Messreihe korrekt aus?
  • Wie stellt man eine Formel nach einer unbekannten Größe um?
  • Was ist eigentlich die wissenschaftliche Schreibweise?

Zum Themenbereich
Themenbereich

BROWNsche Bewegung (Simulation)

Download ( Simulation )
Download ( Simulation )

Video zu den Chladnischen Klangfiguren

Weblink

Dieses Video zeigt Chladnische Klangfiguren, die bei der Anregung einer mit Sand bestreuten Metallplatte durch einen Geigenbogen entstehen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt Chladnische Klangfiguren, die bei der Anregung einer mit Sand bestreuten Metallplatte durch einen Geigenbogen entstehen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

atomare Vorgänge in den Gasatomen einer Entladungslampe

Download ( Simulation )

Dieses JAVA-Applet stellt die atomaren Vorgänge in den Gasatomen einer Entladungslampe (z.B. Neonröhre) dar. Das Java-Applet wird über ein Framework…

Zum Download
Download ( Simulation )

Dieses JAVA-Applet stellt die atomaren Vorgänge in den Gasatomen einer Entladungslampe (z.B. Neonröhre) dar. Das Java-Applet wird über ein Framework…

Zum Download

FRANCK-HERTZ-Versuch (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Absorptions- und Emissionsspektren

Download ( Simulation )

Darstellung verschiedener typischer Absorptions- und Emissionsspektren. Dabei werden nicht alle messbaren Absorptions- bzw. Emissionslinien…

Zum Download
Download ( Simulation )

Darstellung verschiedener typischer Absorptions- und Emissionsspektren. Dabei werden nicht alle messbaren Absorptions- bzw. Emissionslinien…

Zum Download

Sammlung interaktiver Experimente zum Franck-Hertz-Versuch

Weblink

In dieser Sammlung an interaktiven Bildschirmexperimenten (IBE) könnt ihr den Franck-Hertz-Versuch selbst und interaktiv durchführen. In verschiedenen Experimenten und Messaufbauten könnt ihr von zuhause den Versuch sowohl mit Quecksilber als auch mit Neon durchführen und auswerten.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink
Weblink

In dieser Sammlung an interaktiven Bildschirmexperimenten (IBE) könnt ihr den Franck-Hertz-Versuch selbst und interaktiv durchführen. In verschiedenen Experimenten und Messaufbauten könnt ihr von zuhause den Versuch sowohl mit Quecksilber als auch mit Neon durchführen und auswerten.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink

Sammlung interaktiver Experimente zur Röntgenstrahlung

Weblink

Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) behandelt das Thema der Röntgenstrahlung. Ihr lernt den Aufbau und die Funktionsweise eines Röntgengeräts kennen, untersucht das Modellexperiment der Bragg-Reflexion und könnt zentrale Experimente, wie die Bestimmung der Planckkonstante mit dem Röntgengerät interaktiv durchführen.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink
Weblink

Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) behandelt das Thema der Röntgenstrahlung. Ihr lernt den Aufbau und die Funktionsweise eines Röntgengeräts kennen, untersucht das Modellexperiment der Bragg-Reflexion und könnt zentrale Experimente, wie die Bestimmung der Planckkonstante mit dem Röntgengerät interaktiv durchführen.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.

Zur Übersicht Zum externen Weblink

Video zum Linienspektrum von Argon

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Argon-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Argon-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zum Linienspektrum von Kohlenstoffdioxid

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Kohlenstoffdioxid-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Kohlenstoffdioxid-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Video zum Linienspektrum von Wasserstoff

Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Wasserstoff-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Dieses Video zeigt ein Experiment zur Beobachtung des Linienspektrums einer Wasserstoff-Gasentladungslampe. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Röntgenspektren (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Röntgenbremsspektrum (Simulation)

Download ( Simulation )

Wir danken Thomas Kippenberg für die Erlaubnis, diese Simulation der MintApps auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3.

Zum Download
Download ( Simulation )

Wir danken Thomas Kippenberg für die Erlaubnis, diese Simulation der MintApps auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3.

Zum Download

Charakteristisches Röntgenspektrum (Simulation)

Download ( Simulation )

Wir danken Thomas Kippenberg für die Erlaubnis, diese Simulation der MintApps auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3.

Zum Download
Download ( Simulation )

Wir danken Thomas Kippenberg für die Erlaubnis, diese Simulation der MintApps auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3.

Zum Download

Versuchsauswertung zum Röntgenspektrum

Aufgabe ( Übungsaufgaben )

Mit einer Röntgenröhre wurden bei einer Röhrenspannung von \(U=42{,}4\,\rm{kV}\) unter Nutzung der Braggschen Drehkristallmethode mit LiF-Kristall…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Mit einer Röntgenröhre wurden bei einer Röhrenspannung von \(U=42{,}4\,\rm{kV}\) unter Nutzung der Braggschen Drehkristallmethode mit LiF-Kristall…

Zur Aufgabe

Resonanzabsorption und Resonanzfluoreszenz von Natrium

Versuche

  • Demonstration der Energieaufnahme von Atomen durch Absorption von Photonen (Resonanzabsorption)
  • Demonstration der Energieabgabe von Atomen durch Emission von Photonen (Resonanzfluoreszenz)

Zum Artikel
Versuche

  • Demonstration der Energieaufnahme von Atomen durch Absorption von Photonen (Resonanzabsorption)
  • Demonstration der Energieabgabe von Atomen durch Emission von Photonen (Resonanzfluoreszenz)

Zum Artikel Zu den Aufgaben

Energieaufnahme durch Stoßanregung - Prinzip (Animation)

Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme eines Atoms am Beispiel eines unelastischen Stoßes des Atoms mit einem Elektron (Stoßanregung).

Zum Download
Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme eines Atoms am Beispiel eines unelastischen Stoßes des Atoms mit einem Elektron (Stoßanregung).

Zum Download

Energieaufnahme durch Stoßanregung - Varianten (Animation)

Download ( Simulation )

Die Animation zeigt verschiedene Arten von Stößen eines Atoms mit einem Elektron in Abhängigkeit von der kinetischen Energie des Elektrons.

Zum Download
Download ( Simulation )

Die Animation zeigt verschiedene Arten von Stößen eines Atoms mit einem Elektron in Abhängigkeit von der kinetischen Energie des Elektrons.

Zum Download

Energieaufnahme durch Absorption - Prinzip (Animation)

Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme (Anregung) eines Atoms durch die Absorption eines Photons.

Zum Download
Download ( Simulation )

Die Animation zeigt das Prinzip der Energieaufnahme (Anregung) eines Atoms durch die Absorption eines Photons.

Zum Download

Energieaufnahme durch Absorption - Varianten (Animation)

Download ( Simulation )

Die Animation zeigt verschiedene Arten des Aufeinandertreffens eines Atoms mit einem Photon in Abhängigkeit von der Energie des Photons.

Zum Download
Download ( Simulation )

Die Animation zeigt verschiedene Arten des Aufeinandertreffens eines Atoms mit einem Photon in Abhängigkeit von der Energie des Photons.

Zum Download