Direkt zum Inhalt
Suchergebnisse 991 - 1020 von 1089

Planetenbewegungen (Simulation)

Download ( Simulation )

Die Simulation zeigt die Bewegung der Planeten unseres Sonnensystems aus geozentrischer oder heliozentrischer Sicht. Wegen der sehr kleinen…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Bewegung der Planeten unseres Sonnensystems aus geozentrischer oder heliozentrischer Sicht. Wegen der sehr kleinen…

Zum Download

Mondphasen (Animation)

Download ( Animationen )

Die Animation zeigt den Ablauf der Mondphasen.

Zum Download
Download ( Animationen )

Die Animation zeigt den Ablauf der Mondphasen.

Zum Download

Abschlussball (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Kosmologische Rotverschiebung

Grundwissen

  • In den Spektren weit entfernter Galaxien finden sich, wie beim Sonnenspektrum, verschiedene Absorptionslinien.
  • Die Absorptionslinien weit entfernter Galaxien sind deutlich stärker ins Rote verschoben.
  • Ursache für die kosmologische Rotverschiebung ist die Ausdehnung des Raumes selbst, nicht eine Relativbewegung der Galaxie im Vergleich zum Beobachter.
  • In der Astronomie wird die Rotverschiebung häufig durch die dimensionslose Größe \(z=\frac{\lambda_{\rm{beobachtet}}}{\lambda_0}-1\) angegeben.

Zum Artikel
Grundwissen

  • In den Spektren weit entfernter Galaxien finden sich, wie beim Sonnenspektrum, verschiedene Absorptionslinien.
  • Die Absorptionslinien weit entfernter Galaxien sind deutlich stärker ins Rote verschoben.
  • Ursache für die kosmologische Rotverschiebung ist die Ausdehnung des Raumes selbst, nicht eine Relativbewegung der Galaxie im Vergleich zum Beobachter.
  • In der Astronomie wird die Rotverschiebung häufig durch die dimensionslose Größe \(z=\frac{\lambda_{\rm{beobachtet}}}{\lambda_0}-1\) angegeben.

Zum Artikel Zu den Aufgaben

Parallelschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben

OHMsches Gesetz

Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben
Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben

Kontaktlinse (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Rosa Brille (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Teilchenspuren (CK-12-Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von https://www.ck12.org. https://www.ck12.org …

Zum Download

Beobachtungen zum dritten KEPLERschen Gesetz (Simulation)

Download ( Simulation )

Diese Simulation veranschaulicht die Beobachtungen, die zum dritten KEPLERschen Gesetz führen.

Zum Download
Download ( Simulation )

Diese Simulation veranschaulicht die Beobachtungen, die zum dritten KEPLERschen Gesetz führen.

Zum Download

Beobachtungen zum ersten KEPLERschen Gesetz (Simulation)

Download ( Simulation )

Diese Simulation veranschaulicht die Beobachtungen, die zum ersten KEPLERschen Gesetz führen.

Zum Download
Download ( Simulation )

Diese Simulation veranschaulicht die Beobachtungen, die zum ersten KEPLERschen Gesetz führen.

Zum Download

Beobachtungen zum zweiten KEPLERschen Gesetz (Simulation)

Download ( Simulation )

Diese Simulation veranschaulicht die Beobachtungen, die zum zweiten KEPLERschen Gesetz führen.

Zum Download
Download ( Simulation )

Diese Simulation veranschaulicht die Beobachtungen, die zum zweiten KEPLERschen Gesetz führen.

Zum Download

Quantenmechanische Systematisierung des Periodensystems

Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel
Grundwissen

  • Die Zustände der gebundenen Elektronen eines Atoms werden mit den Quantenzahlen beschrieben.
  • Es gibt vier unterschiedliche Quantenzahlen: Hauptquantenzahl \(n\), Nebenquantenzahl \(l\), magnetische Quantenzahl \(m\) und Spin-Quantenzahl \(s\).
  • Das PAULI-Prinzip besagt, dass in einem Atom niemals zwei Elektronen in allen vier Quantenzahlen übereinstimmen können.

Zum Artikel Zu den Aufgaben

Atomdurchmesser aus dem Ölfleckversuch

Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Ölfleckversuch wird aus einer makroskopischen Beobachtung auf eine mikroskopische Eigenschaft geschlossen.
  • Der Durchmesser eines Atoms liegt in der Größenordnung von \(10^{-10}\,\rm{m}\).

Zum Artikel Zu den Aufgaben

Aufbau von Atomkernen

Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A X \overset{\wedge}{=} \ _{\rm{Orndnungszahl}}^{\rm{Massenzahl}} \text{Elementsymbol also z.B } _6^{14} \rm{C}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Atomkerne bestehen aus Nukleonen. Dies sind entweder die elektrisch positiven Protonen und elektrische neutralen Neutronen.
  • Die Kernladungs- oder Ordnungszahl \(Z\) gibt die Zahl der Protonen in einem Atomkern an und bestimmt, um welches Element es sich handelt.
  • Jedes Element hat seine feste Kernladungszahl \(Z\), kann aber mehrere Isotope mit unterschiedlicher Neutronenzahlen \(N\) besitzen.
  • Die Nukleonen- oder Massenzahl \(A=Z+N\) gibt die (ungefähre) Masse eines Atomkerns bzw. des ganzen Atoms in der Maßeinheit \(\rm{u}\) an.
  • Zur eindeutigen Identifikation von Atomkernen nutzt man die Schreibweise\[_Z^A X \overset{\wedge}{=} \ _{\rm{Orndnungszahl}}^{\rm{Massenzahl}} \text{Elementsymbol also z.B } _6^{14} \rm{C}\]

Zum Artikel Zu den Aufgaben

Nuklidkarte stabiler Kerne

Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Atomkerne werden häufig in einer \(N\)-\(Z\)-Nuklidkarte dargestellt.
  • Unterschiedliche Elemente stehen jeweils in verschiedenen Zeilen, Isotope des gleichen Elementes jeweils in der gleichen Zeile.
  • Kleine, leichte Kerne besitzen ungefähr genau so viele Protonen wie Neutronen, bei großen, schweren Kernen ist die Zahl der Neutronen deutlich größer als die der Protonen.

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

COULOMB-Feld - Elektrische Kraft (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine (bewegliche) Punktladung im Raum um eine (ortsfeste) Punktladung (COULOMB-Kraft). Die Simulation…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine (bewegliche) Punktladung im Raum um eine (ortsfeste) Punktladung (COULOMB-Kraft). Die Simulation…

Zum Download

Homogenes elektrisches Feld - Elektrische Kraft (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine Punktladung im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine Punktladung im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit…

Zum Download

Elektrische Kraft (2 Spezialfälle)

Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Elektrische Feldstärke (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke (in Form von Feldstärkevektoren) im Zwischenraum zweier entgegengesetzt geladener Platten. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke (in Form von Feldstärkevektoren) im Zwischenraum zweier entgegengesetzt geladener Platten. Die…

Zum Download

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Potenzial (Simulation)

Download ( Simulation )

Die Simulation zeigt das Potenzial im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für beide Platten…

Zum Download
Download ( Simulation )

Die Simulation zeigt das Potenzial im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für beide Platten…

Zum Download

Homogenes elektrisches Feld - Potenzielle Energie (Simulation)

Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer Punktladung (genauer des Systems Plattenladung-Punktladung) im Zwischenraum zweier entgegengesetzt…

Zum Download
Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer Punktladung (genauer des Systems Plattenladung-Punktladung) im Zwischenraum zweier entgegengesetzt…

Zum Download

Homogenes elektrisches Feld - Arbeit (Simulation)

Download ( Simulation )

Die Simulation zeigt die Arbeit an einer Punktladung (genauer am System Platten-Punktladung) beim Bewegen der Punktladung im Zwischenraum zweier…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Arbeit an einer Punktladung (genauer am System Platten-Punktladung) beim Bewegen der Punktladung im Zwischenraum zweier…

Zum Download

Homogenes elektrisches Feld - Spannung (Simulation)

Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für…

Zum Download

Homogenes elektrisches Feld

Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Feldlinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Feldlinien. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Feldlinien. Die…

Zum Download

Homogenes elektrisches Feld - Äquipotenziallinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Äquipotenziallinien. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Äquipotenziallinien. Die…

Zum Download