Direkt zum Inhalt
Suchergebnisse 841 - 870 von 938

Quiz zu Kräften auf Ladungen in Feldern

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zur Leistung von Glühlampen

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zur Leitfähigkeit von Materialien

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zu magnetischen Eigenschaften

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Messen mit Spannungsmessern

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zu Mikrowellenstrahlung

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Millikan-Versuch

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zu Oszilloskopbildern

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zu magnetischen Grundeigenschaften

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zu Schaltungen (leicht)

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zu Schaltungen (mittel)

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Transformator

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Widerstand

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Messen des Widerstandes

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Umrechnen von Widerstandseinheiten Typ A

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Umrechnen von Widerstandseinheiten Typ B

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Umrechnen von Widerstandseinheiten Typ A

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum Umrechnen von Widerstandseinheiten Typ B

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Quiz zum OHMschen Gesetz

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Weidezaun (Abitur BY 2019 Ph11-1 A2)

Aufgabe ( Übungsaufgaben )

Abb. 1 Aufbau des Modellversuchs zum WeidezaunIm Unterricht wird mithilfe nebenstehender Schaltung ein elektrischer Weidezaun simuliert, indem der…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 Aufbau des Modellversuchs zum WeidezaunIm Unterricht wird mithilfe nebenstehender Schaltung ein elektrischer Weidezaun simuliert, indem der…

Zur Aufgabe

Interferenz und Dipolstrahlung (Abitur BY 2019 Ph12-1 A1)

Aufgabe ( Übungsaufgaben )

Abb. 1 Momentaufnahme der abgestrahlten Wellenfronten (Wellentäler gestrichelt, Wellenberge durchgezogen)Zwei identische gleichphasig schwingende und…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 Momentaufnahme der abgestrahlten Wellenfronten (Wellentäler gestrichelt, Wellenberge durchgezogen)Zwei identische gleichphasig schwingende und…

Zur Aufgabe

COULOMB-Gesetz (Abitur BY 2019 Ph11-1 A1)

Aufgabe ( Übungsaufgaben )

Abb. 1 VersuchsaufbauIm Unterricht soll die Kraft zwischen zwei identischen geladenen Metallkugeln mit Durchmesser \(2{,}0\,\rm{cm}\) untersucht…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Abb. 1 VersuchsaufbauIm Unterricht soll die Kraft zwischen zwei identischen geladenen Metallkugeln mit Durchmesser \(2{,}0\,\rm{cm}\) untersucht…

Zur Aufgabe

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Funktionsprinzip von Leuchtstofflampen

Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel
Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrische Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

Leistung bei der Parallelschaltung von Schaltern und Lampen

Aufgabe ( Einstiegsaufgaben )

Ein Stromkreis enthält eine elektrische Quelle mit \(\left| {{U_0}} \right| = 6{,}0\,{\rm{V}}\) und drei gleichartige Glühlampen mit der Aufschrift…

Zur Aufgabe
Aufgabe ( Einstiegsaufgaben )

Ein Stromkreis enthält eine elektrische Quelle mit \(\left| {{U_0}} \right| = 6{,}0\,{\rm{V}}\) und drei gleichartige Glühlampen mit der Aufschrift…

Zur Aufgabe

Elektrische Kraft (2 Spezialfälle)

Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Quiz zum COULOMB-Gesetz

Aufgabe ( Quiz )
Aufgabe ( Quiz )

Kugeln einer Influenzmaschine

Aufgabe ( Übungsaufgaben )

Die Kugeln einer Influenzmaschine haben einen Durchmesser von \(2{,}00\,\rm{cm}\) und tragen die entgegengesetzte, aber betragsmäßig gleiche Ladung…

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

Die Kugeln einer Influenzmaschine haben einen Durchmesser von \(2{,}00\,\rm{cm}\) und tragen die entgegengesetzte, aber betragsmäßig gleiche Ladung…

Zur Aufgabe