Direkt zum Inhalt
Suchergebnisse 541 - 570 von 743

OHMsches Gesetz - Formelumstellung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Formel für das OHMsche Gesetz nach den drei in der Formel auftretenden Größen.

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Formel für das OHMsche Gesetz nach den drei in der Formel auftretenden Größen.

Zum Download

Kapazität eines Plattenkondensators (Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download

Parallelschaltung von Widerständen - Formelumstellung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Gleichung \(\frac{1}{{{R_{{\rm{ges}}}}}} = \frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}\) nach den drei in…

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Gleichung \(\frac{1}{{{R_{{\rm{ges}}}}}} = \frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}\) nach den drei in…

Zum Download

Reihenschaltung von Widerständen - Formelumstellung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Gleichung \({{R_{{\rm{ges}}}} = {R_1} + {R_2}}\) nach den drei in der Formel auftretenden Größen.

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Gleichung \({{R_{{\rm{ges}}}} = {R_1} + {R_2}}\) nach den drei in der Formel auftretenden Größen.

Zum Download

OHMsches Gesetz (klassisch) - Formelumstellung (Animation)

Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Formel \(I = G \cdot U\) nach den drei in der Formel auftretenden Größen.

Zum Download
Download ( Animationen )

Die Animation zeigt das schrittweise Auflösen der Formel \(I = G \cdot U\) nach den drei in der Formel auftretenden Größen.

Zum Download

COULOMB-Gesetz (Simulation)

Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download
Download ( Simulation )

Die Simulation wird zur Verfügung gestellt von: PhET Interactive Simulations University of Colorado Boulder https://phet.colorado.edu Informationen…

Zum Download

Parallelschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier parallel geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(\frac{1}{R_{12}}=\frac{1}{R_1} +\frac{1}{R_2}\)
  •  Der Gesamtwiderstands einer Parallelschaltung ist stets kleiner als der kleinste Einzelwiderstand eines Astes.

Zum Artikel Zu den Aufgaben

OHMsches Gesetz

Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben
Grundwissen

Das Experiment zeigt, dass bei vielen elektrischen Leitern die Spannung \(U\), die über dem Leiter abfällt, proportional ist zur Stärke \(I\) des Stroms, der durch den Leiter fließt.

Diese Proportionalität bezeichnet man als das OHMsche Gesetz und beschreibt sie durch die Gleichung \(U = R \cdot I\).

Den Proportionalitätsfaktor \(R\) bezeichnet man als elektrischen Widerstand. Seine Maßeinheit ist \(1\,\Omega\) (Ohm).

Zum Artikel Zu den Aufgaben

Leiter und Nichtleiter

Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Materialien können grob in zwei Kategorien eingeteilt werden: Leiter (z.B. Metalle) und Nichtleiter (z.B. Kunststoffe).
  • Ob ein Material Strom gut oder schlecht leitet kannst du mit einer Testschaltung prüfen.
  • Je mehr Salz im Wasser gelöst ist, desto besser leitet Wasser Strom.
  • Die meisten Gase leiten Strom nicht.

Zum Artikel Zu den Aufgaben

Elektrische Ladung

Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel
Grundwissen

  • Die Einheit der elektrischen Ladung, Symbol \(Q\), ist das Coulomb, Symbol \(\rm{C}\).
  • Ein Elektron besitzt die negative Elementarladung: \(q_{\rm{Elektron}}=-e = -1{,}6 \cdot 10^{-19}\,\rm{C}\).

Zum Artikel Zu den Aufgaben

COULOMB-Feld - Elektrische Kraft (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine (bewegliche) Punktladung im Raum um eine (ortsfeste) Punktladung (COULOMB-Kraft). Die Simulation…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine (bewegliche) Punktladung im Raum um eine (ortsfeste) Punktladung (COULOMB-Kraft). Die Simulation…

Zum Download

Homogenes elektrisches Feld - Elektrische Kraft (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine Punktladung im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Kraft auf eine Punktladung im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit…

Zum Download

Elektrische Kraft (2 Spezialfälle)

Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener paralleler Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) dieser elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
  • Die elektrische Kraft \(\vec F_{\rm{C}}\) auf eine Punktladung \(q\) im Abstand \(r\) von einer ortsfesten Punktladung \(Q\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) dieser COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
  • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante. 

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Elektrische Feldstärke (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke (in Form von Feldstärkevektoren) im Zwischenraum zweier entgegengesetzt geladener Platten. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke (in Form von Feldstärkevektoren) im Zwischenraum zweier entgegengesetzt geladener Platten. Die…

Zum Download

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Potenzial (Simulation)

Download ( Simulation )

Die Simulation zeigt das Potenzial im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für beide Platten…

Zum Download
Download ( Simulation )

Die Simulation zeigt das Potenzial im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für beide Platten…

Zum Download

Homogenes elektrisches Feld - Potenzielle Energie (Simulation)

Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer Punktladung (genauer des Systems Plattenladung-Punktladung) im Zwischenraum zweier entgegengesetzt…

Zum Download
Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer Punktladung (genauer des Systems Plattenladung-Punktladung) im Zwischenraum zweier entgegengesetzt…

Zum Download

Homogenes elektrisches Feld - Arbeit (Simulation)

Download ( Simulation )

Die Simulation zeigt die Arbeit an einer Punktladung (genauer am System Platten-Punktladung) beim Bewegen der Punktladung im Zwischenraum zweier…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Arbeit an einer Punktladung (genauer am System Platten-Punktladung) beim Bewegen der Punktladung im Zwischenraum zweier…

Zum Download

Homogenes elektrisches Feld - Spannung (Simulation)

Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Zwischenraum zweier entgegengesetzt geladener Platten. Die Simulation rechnet mit dem (für…

Zum Download

Homogenes elektrisches Feld

Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
  • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.

Zum Artikel Zu den Aufgaben

Homogenes elektrisches Feld - Feldlinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Feldlinien. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Feldlinien. Die…

Zum Download

Homogenes elektrisches Feld - Äquipotenziallinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Äquipotenziallinien. Die…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Zwischenraum zweier entgegengesetzt geladener Platten durch Äquipotenziallinien. Die…

Zum Download

COULOMB-Feld - Elektrische Feldstärke (Simulation)

Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den…

Zum Download
Download ( Simulation )

Die Simulation zeigt die elektrische Feldstärke im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den…

Zum Download

COULOMB-Feld - Feldlinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Raumbereich um eine Punktladung durch Feldlinien. Die Simulation rechnet in einem…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Raumbereich um eine Punktladung durch Feldlinien. Die Simulation rechnet in einem…

Zum Download

COULOMB-Feld - Arbeit (Simulation)

Download ( Simulation )

Die Simulation zeigt die Arbeit an einer beweglichen Punktladung (genauer am System der beiden Ladungen) beim Bewegen im Raumbereich um eine ortsfeste…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Arbeit an einer beweglichen Punktladung (genauer am System der beiden Ladungen) beim Bewegen im Raumbereich um eine ortsfeste…

Zum Download

COULOMB-Feld - Potenzielle Energie (Simulation)

Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer beweglichen Punktladung (genauer des Systems der beiden Ladungen) im Raumbereich um eine ortsfeste…

Zum Download
Download ( Simulation )

Die Simulation zeigt die potenzielle Energie einer beweglichen Punktladung (genauer des Systems der beiden Ladungen) im Raumbereich um eine ortsfeste…

Zum Download

COULOMB-Feld - Potenzial (Simulation)

Download ( Simulation )

Die Simulation zeigt das Potenzial im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den Abmessungen…

Zum Download
Download ( Simulation )

Die Simulation zeigt das Potenzial im Raum um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit den Abmessungen…

Zum Download

COULOMB-Feld - Äquipotenziallinien (Simulation)

Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Raum um eine ortsfeste Punktladung durch Äquipotenziallinien. Die Simulation rechnet…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Darstellung des elektrischen Feldes im Raum um eine ortsfeste Punktladung durch Äquipotenziallinien. Die Simulation rechnet…

Zum Download

COULOMB-Feld - Spannung (Simulation)

Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Raumbereich um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit…

Zum Download
Download ( Simulation )

Die Simulation zeigt die Spannung zwischen zwei Punkten im Raumbereich um eine ortsfeste Punktladung. Die Simulation rechnet in einem Raumbereich mit…

Zum Download

Potenzial

Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Jedem Punkt \(\rm{P}\) eines elektrischen Feldes kann ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\) zugeordnet werden. Dieses Potenzial ist von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
  • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)} = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot Q \cdot \frac{1}{r}\).
  • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt des Potenzials die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).

Zum Artikel Zu den Aufgaben