Abb. 1
Tachometers eines Autos während eines Beschleunigungs- und anschließenden Bremsvorgangs
Die Animation in Abb. 1 dokumentiert mit Hilfe eines (Spezial-)Tachometers die geradlinige Fahrt eines Autos, welche in fünf charakteristische Abschnitte zerfällt.
a)
Charakterisiere diese fünf Abschnitte jeweils mit mindestens einem Satz.
b)
Erstelle ein Zeit-Geschwindigkeits-Diagramm der Bewegung des Autos von \(0\rm{s}\) bis \(14\rm{s}\).
Gib die Geschwindigkeit in \({\frac{{\rm{m}}}{{\rm{s}}}}\) an.
c)
Berechne die mittleren Beschleunigungen in den fünf Bewegungsphasen in \({\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}}}\).
d)
Berechne, welche Durchschnittsgeschwindigkeit in \({\frac{{{\rm{km}}}}{{\rm{h}}}}\) das Auto in der Zeitspanne hat, in der es von \({0\frac{{{\rm{km}}}}{{\rm{h}}}}\) auf \({100\frac{{{\rm{km}}}}{{\rm{h}}}}\) beschleunigt.
Abschnitt 1 zwischen 0.s und 3.s: Geradlinige, beschleunigte Bewegung (\({a_1} > 0\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}}\)) ohne Anfangsgeschwindigkeit;
Abschnitt 2 zwischen 3.s und 6.s: Geradlinige, beschleunigte Bewegung (\({a_2} > 0\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}}\)) mit Anfangsgeschwindigkeit \(50\frac{{{\rm{km}}}}{{\rm{h}}}\); (\({a_2} < {a_1}\))
Abschnitt 3 zwischen 6.s und 9.s: Geradlinige, beschleunigte Bewegung (\({a_3} > 0\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}}\)) mit Anfangsgeschwindigkeit \(80\frac{{{\rm{km}}}}{{\rm{h}}}\); (\({a_3} < {a_2}\))
Abschnitt 4 zwischen 9.s und 11.s: Geradlinige, gleichförmige Bewegung (\({a_4} = 0\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}}\)) mit Geschwindigkeit \(100\frac{{{\rm{km}}}}{{\rm{h}}}\);
Abschnitt 5 zwischen 11.s und 14.s: Geradlinige, negativ beschleunigte Bewegung (\({a_5} < 0\frac{{\rm{m}}}{{{{\rm{s}}^{\rm{2}}}}}\)) mit Anfangsgeschwindigkeit \(100\frac{{{\rm{km}}}}{{\rm{h}}}\);
b)
Joachim Herz Stiftung
Abb. 2 Diagramm in km/h
Joachim Herz Stiftung
Abb. 3 Diagramm in m/s
Beispiel für eine Umrechnung von \(\frac{{{\rm{km}}}}{{\rm{h}}}\) in \(\frac{{\rm{m}}}{{\rm{s}}}\):\[100\frac{{{\rm{km}}}}{{\rm{h}}}{\rm{ = 100}} \cdot \frac{{{\rm{1000m}}}}{{{\rm{3600s}}}}{\rm{ = 100}} \cdot \frac{{\rm{1}}}{{{\rm{3}},{\rm{6}}}}\frac{{\rm{m}}}{{\rm{s}}} = {\rm{27}},{\rm{8}}\frac{{\rm{m}}}{{\rm{s}}}\]
Das Auto braucht \(9,0\rm{s}\) um die Geschwindigkeit von \(100\frac{{{\rm{km}}}}{{\rm{h}}}\) zu erreichen. Laut Tachometer legt es in dieser Zeit die Strecke von \(150\rm{m}\) zurück. Für die durchschnittliche Geschwindigkeit gilt dann:
\[\bar v = \frac{{\Delta x}}{{\Delta t}} \Rightarrow \bar v = \frac{{150{\rm{m}} - 0,0{\rm{m}}}}{{9,0{\rm{s}} - 0,0{\rm{s}}}} = {\rm{1}}7\frac{{\rm{m}}}{{\rm{s}}} = {\rm{61}}\frac{{{\rm{km}}}}{{\rm{h}}}\]