Direkt zum Inhalt

Grundwissen & Aufgaben

Im Grundwissen kommen wir direkt auf den Punkt. Hier findest du die wichtigsten Ergebnisse und Formeln für deinen Physikunterricht. Und damit der Spaß nicht zu kurz kommt, gibt es die beliebten LEIFI-Quizze und abwechslungsreiche Übungsaufgaben mit ausführlichen Musterlösungen. So kannst du prüfen, ob du alles verstanden hast.

  • COULOMB-Gesetz

    • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
    • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
    • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
    • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.
  • Elektrische Kraft

    • Die elektrische Kraft \(\vec F_{\rm{C}}\) zwischen zwei Punktladung \(Q\) und \(q\) im Abstand \(r\) (COULOMB-Kraft) liegt auf der Verbindungsgeraden der beiden Ladungen. Der Betrag \(F_{\rm{C}}\) der COULOMB-Kraft berechnet sich durch \(F_{\rm{C}} = \frac{1}{4 \cdot \pi  \cdot \varepsilon _0} \cdot \frac{\left|Q\right| \cdot \left|q\right|}{{{r^2}}}\).
    • Die elektrische Kraft \(\vec F_{\rm{el}}\) auf eine Punktladung \(q\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist senkrecht zu den Plattenoberflächen gerichtet. Der Betrag \(F_{\rm{el}}\) der elektrischen Kraft berechnet sich durch \(F_{\rm{el}} = \frac{1}{\varepsilon _0} \cdot \frac{\left| Q \right| \cdot \left|q \right|}{A}\).
    • Dabei ist jeweils \(\varepsilon_0 = 8{,}854 \cdot {10^{-12}}\,\frac{\rm{A}\,\rm{s}}{\rm{V}\,\rm{m}}\) die elektrische Feldkonstante.
  • Elektrisches Feld und Feldliniendarstellung

    • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
    • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
    • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
    • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).
  • Überlagerung elektrischer Felder

  • Potentielle Energie im homogenen Feld

  • Potential und elektrische Spannung

  • Homogenes elektrisches Feld

    • Hat die elektrische Feldstärke \(\vec E\) in einem Raumgebiet immer die gleiche Richtung, die gleiche Orientierung und den gleichen Betrag, so sprechen wir von einem homogenen elektrischen Feld in diesem Raumgebiet.
    • Wichtigstes Beispiel für ein homogenes elektrisches Feld ist das Feld im Zwischenraum zweier entgegengesetzt geladener Platten.
  • Potenzial

    • Jeder Punkt \(\rm{P}\) eines elektrischen Feldes besitzt ein Potenzial \(\varphi_{\rm{P}_0} \left( \rm{P} \right)=\frac{{{E_{{\rm{pot}}{\rm{,}}{{\rm{P}}_0}}}\left( {\rm{P}} \right)}}{q}\). Dieses Potenzial ist nur von der Größe und der Anordnung der felderzeugenden Ladung \(Q\) und der Wahl eines Bezugspunktes \(\rm{P}_0\) abhängig.
    • Im COULOMB-Feld wählt man den Bezugspunkt des Potenzials unendlich weit von der felderzeugenden Ladung entfernt. Dann hat das Potenzial im Abstand \(r\) von der felderzeugenden Ladung den Wert \( {\varphi \left( r \right)}  = \frac{1}{{4 \cdot \pi \cdot {\varepsilon _0}}} \cdot  Q  \cdot \frac{1}{r}\)
    • Im homogenen elektrischen Feld (z.B. im Zwischenraum zweier entgegengesetzt geladener Platten) wählt man als Bezugspunkt die Oberfläche der negativ geladenen Platte. Dann hat das Potenzial im Abstand \(x\) von der negativ geladenen Platte den Wert \(\varphi \left( x \right) = E \cdot x\) bzw. \(\varphi \left( x \right) = \frac{1}{{{\varepsilon_0}}} \cdot \frac{{\left| Q \right|}}{A} \cdot x\).
  • Elementarladung

  • Kondensator als Energiespeicher

  • Ein- und Ausschalten von RC-Kreisen

Versuche

Das Salz in der Suppe der Physik sind die Versuche. Ob grundlegende Demonstrationsexperimente, die du aus dem Unterricht kennst, pfiffige Heimexperimente zum eigenständigen Forschen oder Simulationen von komplexen Experimenten, die in der Schule nicht durchführbar sind - wir bieten dir eine abwechslungsreiche Auswahl zum selbstständigen Auswerten und Weiterdenken an. Mit interaktiven Versuchen kannst du die erste Schritte Richtung Nobelpreis zurücklegen.

Mehr erfahren Mehr erfahren

Ausblick

Du bist gut in Mathe und schon ein halber Ingenieur? Hier gibt’s für Fortgeschrittene vertiefende Inhalte und spannende Anwendungen aus Alltag und Technik.

Mehr erfahren Mehr erfahren

Geschichte

Die moderne Physik beruht auf den Erkenntnissen von Wissenschaftlerinnen und Wissenschaftlern in ihrer jeweiligen Zeit. Aber lies selbst!

Mehr erfahren Mehr erfahren

Downloads

Lade unsere Simulationen, Animationen und interaktive Tafelbilder für den Unterricht oder eine Präsentation kostenfrei herunter.

Mehr erfahren Mehr erfahren

Weblinks

Von Cern und NASA über Unterrichtsmaterial bis Videos, unsere Auswahl aus dem World Wide Web. Viel Spaß beim Stöbern.

Mehr erfahren Mehr erfahren