Direkt zum Inhalt

Aufgabe

Spulenstrom für ein Magnetfeld

Schwierigkeitsgrad: leichte Aufgabe

a)
Joachim Herz Stiftung
Abb. 1 Stromkreis mit langgestreckter Spule

Berechne die Stärke des Stroms \(I\), der durch die 600 Windungen einer langgestreckten Zylinderspule  mit \(l=40\,\rm{cm}\) fließt, wenn in der Mitte der Spule ein Magnetfeld von \(B = 6{,}6\cdot 10^{-3}\,\rm{\frac{V\cdot s}{m^2}}\) besteht.

b)

Erläutere, wie sich das Magnetfeld in der Spule verändert, wenn der Strom \(I\) verdreifacht und die Länge \(l\) der Spule halbiert wird.

c)

Erläutere, wie sich das Magnetfeld der Spule verändert, wenn die Spule nicht mit Luft sondern mit einem Weicheisenkern gefüllt ist.

Lösung einblendenLösung verstecken Lösung einblendenLösung verstecken
a)

Allgemein gilt für das Magnetfeld im Inneren einer langestreckten, luftgefüllten Zylinderspule\[B = {\mu _0} \cdot \frac{\rm N}{l}\cdot I \Leftrightarrow I = \frac{{B \cdot l}}{{{\mu _0} \cdot {\rm N}}}\]Einsetzen der gegebenen Werte liefert\[\Rightarrow I = \frac{{6{,}6 \cdot 1{0^{ - 3}} \cdot 0{,}40}}{{4 \cdot \pi \cdot {{10}^{ - 7}} \cdot 600}}\frac{{{\rm{V}} \cdot {\rm{s}} \cdot {\rm{m}}}}{{{{\rm{m}}^{\rm{2}}} \cdot {\textstyle{{{\rm{V}} \cdot {\rm{s}}} \over {{\rm{A}} \cdot {\rm{m}}}}}}} \approx 3{,}5\,{\rm{A}}\]

b)

Grundsätzlich gilt \[B = {\mu _0} \cdot \frac{\rm N}{l}\cdot I\]Mit den veränderten Größen folgt\[B_1 = {\mu _0} \cdot \frac{\rm N}{\frac{1}{2}\cdot l}\cdot 3\cdot I=6\cdot B\]Das Magnetfeld im Inneren der Spule versechsfacht sich also durch die Änderungen.

c)

Hier muss die relative Permeabilität \(\mu_{\rm{r}}\) berücksichtigt werden. Es gilt also nun \[B = {\mu _0} \cdot \mu_{\rm{r}}\cdot \frac{\rm N}{l}\cdot I\]Da die relative Permeabilität von Weicheisen bis zu \(5000\) betragen kann, wird das Magnetfeld also durch den Einsatz des Weicheisenkerns deutlich verstärkt.

Grundwissen zu dieser Aufgabe

Elektrizitätslehre

Ströme & magnetisches Feld