Direkt zum Inhalt

Aufgabe

Kraft zwischen den Leitungen einer Gleichspannungs-Freileitung

Schwierigkeitsgrad: leichte Aufgabe

Abb. 1 Fenno-Skan HVDC power line, running over Turku-Pori route in Rauma, Finland

Eine Hochspannungs-Gleichstrom-Freileitung überträgt bei der Spannung \(1150\,{\rm{kV}}\) die Leistung \(600\,{\rm{MW}}\).

Gib an, ob sich die beiden parallelen Leitungen anziehen oder abstoßen.

Berechne den Betrag der magnetischen Kraft, die die parallelen Leitungen pro \(100\,{\rm{m}}\) Länge aufeinander ausüben, wenn sie im Abstand \(0{,}80\,{\rm{m}}\) voneinander aufgehängt sind.

Lösung einblendenLösung verstecken Lösung einblendenLösung verstecken

Da die Ströme in entgegengesetzte Richtungen fließen ergibt sich mit der ersten Rechte-Hand-Regel und der Drei-Finger-Regel der rechten Hand, dass sich die beiden Leitungen abstoßen.

Zuerst berechnen wir die Stärke des Stroms, der durch die beiden Leitungen fließt. Mit \(P_{\rm{el}}=600\,{\rm{MW}}=600\cdot 10^{6}\,{\rm{W}}\) und \(U=1150\,{\rm{kV}}=1150 \cdot 10^{3}\,\rm{V}\) ergibt die Formel für die elektrische Leistung\[{P_{{\rm{el}}}} = U \cdot I \Leftrightarrow I = \frac{{{P_{{\rm{el}}}}}}{U}\]Einsetzen der gegebenen Werte liefert\[I = \frac{{600 \cdot {{10}^6}\,{\rm{W}}}}{{1150 \cdot {{10}^3}\,{\rm{V}}}} = 520\,{\rm{A}}\]wobei das Ergebnis auf zwei gültige Ziffern gerundet ist.

Nun berechnen wir den Betrag der magnetischen Kraft zwischen den beiden Leitungen.

Im ersten Schritt berechnen wir die magnetische Feldstärke, die aufgrund des Stroms in einer Leitung am Ort der anderen Leitung herrscht. Mit \(I_1=520\,{\rm{A}}\) und \(r=0{,}80\,{\rm{m}}\) ergibt die Formel für die magnetische Feldstärke eines geraden und sehr langen Leiters\[B = {\mu _0} \cdot \frac{I}{{2 \cdot \pi \cdot r}}\]nach dem Einsetzen der gegebenen und berechneten Werte\[B = 1{,}26 \cdot 10^{-6}\,\frac{{\rm{N}}}{{{{\rm{A}}^2}}} \cdot \frac{{520\,{\rm{A}}}}{{2 \cdot \pi \cdot 0{,}80\,{\rm{m}}}} = 1{,}3 \cdot 10^{-4}\,{\rm{T}}\]

Im zweiten Schritt berechnen wir den Betrag der magnetischen Kraft, die auf den Strom in der zweiten Leitung aufgrund dieser magnetischen Feldstärke wirkt. Mit \(I_2=5200\,{\rm{A}}\), \(l=100\,{\rm{m}}\) und \(\varphi = 90^\circ\) ergibt die Formel für die magnetische Kraft auf ein Leiterstück\[{F_{{\rm{mag}}}} = I \cdot l \cdot B \cdot \sin \left( \varphi \right)\]nach dem Einsetzen der gegebenen und berechneten Werte\[{F_{{\rm{mag}}}} = 5200\,{\rm{A}} \cdot 100\,{\rm{m}} \cdot 1{,}3 \cdot 10^{-4}\,{\rm{T}} \cdot \sin \left( {90^\circ } \right) = 68\,{\rm{N}}\]