Direkt zum Inhalt
Suchergebnisse 121 - 150 von 517

Geladene Teilchen im magnetischen Längsfeld

Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben

Stehende elektromagnetische Welle (Simulation)

Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben

Lord KELVIN (Sir William Thomson) (1824 - 1907)

Geschichte
Geschichte

Lernaufgabe für digitale Magnetfeldsensoren: Gefährliche Magnetfelder!?

Weblink

Sind Magnetfelder eigentlich gefährlich? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Magnetfeldsensoren entwickelt worden. Die Schülerinnen und Schüler erkunden und messen die Stärke der Magnetfelder von Alltagsgegenständen und beurteilen mithilfe verschiedener Materialien mögliche Gefahren.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

Sind Magnetfelder eigentlich gefährlich? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Magnetfeldsensoren entwickelt worden. Die Schülerinnen und Schüler erkunden und messen die Stärke der Magnetfelder von Alltagsgegenständen und beurteilen mithilfe verschiedener Materialien mögliche Gefahren.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

Lernaufgabe für digitale Magnetfeldsensoren: Magnetische Datenspeicherung

Weblink

Wie werden Daten magnetisch gespeichert? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Magnetfeldsensoren entwickelt worden. Die Schülerinnen und Schüler fertigen selbstständig ein Funktionsmodell eines magnetischen Datenspeichers und lesen mithilfe eines Sensors gespeicherte Daten aus.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink
Weblink

Wie werden Daten magnetisch gespeichert? Diese Lernaufgabe der iMINT-Akademie Berlin ist speziell für den Einsatz von digitalen Magnetfeldsensoren entwickelt worden. Die Schülerinnen und Schüler fertigen selbstständig ein Funktionsmodell eines magnetischen Datenspeichers und lesen mithilfe eines Sensors gespeicherte Daten aus.
Dieses OER-Material und weiteres Material der iMINT-Akademie Berlin gibt es unter:
https://bildungsserver.berlin-brandenburg.de/unterricht/faecher/mathematik-naturwissenschaften/mint/i-mint-akademie/weiterfuehrende-schulen/fachset-physik-1

Zum externen Weblink

Video zum Magnetfeld eines Stabmagneten

Weblink

Das Video zeigt das Magnetfeld eines Stabmagneten. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink
Weblink

Das Video zeigt das Magnetfeld eines Stabmagneten. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.

Zur Übersicht Zum externen Weblink

Magnetischen Kraft und Definition der magnetischen Flussdichte mit dem Kraftsensor

Versuche

  • Erarbeitung der Formel für die magnetische Kraft auf einen stromdurchflossenen Leiter
  • Definition der magnetischen Flussdichte \(B\)

Zum Artikel
Versuche

  • Erarbeitung der Formel für die magnetische Kraft auf einen stromdurchflossenen Leiter
  • Definition der magnetischen Flussdichte \(B\)

Zum Artikel Zu den Aufgaben

Magnetfeld eines Stabmagneten - Wassserwannenversuch (Animation)

Download ( Animationen )

Die Animation zeigt die Darstellung von Feldlinien mithilfe einer Wasserwanne, in der eine an einem Korken montierte Stricknadel im Wasser die…

Zum Download
Download ( Animationen )

Die Animation zeigt die Darstellung von Feldlinien mithilfe einer Wasserwanne, in der eine an einem Korken montierte Stricknadel im Wasser die…

Zum Download

Teilchenbahnen in Magnetfeldern - Magnetische Flasche (Animation)

Download ( Animationen )

Die Animation zeigt die Bahnkurve eines positiv geladenen Teilchens, das in eine sogenannte magnetische Flasche eintritt.

Zum Download
Download ( Animationen )

Die Animation zeigt die Bahnkurve eines positiv geladenen Teilchens, das in eine sogenannte magnetische Flasche eintritt.

Zum Download

Magnetfeld eines Stabmagneten (Simulation)

Download ( Simulation )

Diese Simulation demonstriert das Magnetfeld eines stabförmigen Dauermagneten, der mit Hilfe einer Magnetnadel untersucht werden kann. Die Magnetpole…

Zum Download
Download ( Simulation )

Diese Simulation demonstriert das Magnetfeld eines stabförmigen Dauermagneten, der mit Hilfe einer Magnetnadel untersucht werden kann. Die Magnetpole…

Zum Download

Magnetfeld eines Stabmagneten (Simulation)

Versuche
Versuche

Modell der Elementarmagnete - Entmagnetisieren eines Kollektivs von Eisenfeilspänen durch Schütteln (Animation)

Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Kollektivs von Eisenfeilspänen durch Schütteln.

Zum Download
Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Kollektivs von Eisenfeilspänen durch Schütteln.

Zum Download

Modell der Elementarmagnete - Entmagnetisieren eines Weicheisenstabes durch Stöße (Animation)

Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Stößen.

Zum Download
Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Stößen.

Zum Download

Modell der Elementarmagnete - Magnetisieren eines Weicheisenstabes (Animation)

Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Weicheisenstabes durch Vorbeistreichen eines Permanentmagneten.

Zum Download
Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Weicheisenstabes durch Vorbeistreichen eines Permanentmagneten.

Zum Download

Magnetischer Fluss und Induktionsgesetz - Magnetischer Fluss (Simulation)

Download ( Simulation )

Die Simulation veranschaulicht den magnetischen Flusses \(\Phi\) in Abhängigkeit von der magnetischen Flussdichte \(B\), dem Flächeninhalt \(A\) und…

Zum Download
Download ( Simulation )

Die Simulation veranschaulicht den magnetischen Flusses \(\Phi\) in Abhängigkeit von der magnetischen Flussdichte \(B\), dem Flächeninhalt \(A\) und…

Zum Download

Modell der Elementarmagnete - Entmagnetisieren eines Weicheisenstabes durch Wärme (Animation)

Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Wärme.

Zum Download
Download ( Animationen )

Die Animation zeigt das Entmagnetisieren eines magnetisierten Weicheisenstabes durch Energiezufuhr in Form von Wärme.

Zum Download

Magnetismus-Denksport - Eisen an Magnet (Animation)

Download ( Animationen )

Die Animation zeigt das Verhalten eines Magneten, dem sich ein Eisenstück an verschiedenen Stellen nähert.

Zum Download
Download ( Animationen )

Die Animation zeigt das Verhalten eines Magneten, dem sich ein Eisenstück an verschiedenen Stellen nähert.

Zum Download

Modell der Elementarmagnete - Magnetisieren eines Kollektivs von Eisenfeilspänen (Animation)

Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Kollektivs von Eisenfeilspänen durch Vorbeistreichen eines Permanentmagneten.

Zum Download
Download ( Animationen )

Die Animation zeigt das Magnetisieren eines Kollektivs von Eisenfeilspänen durch Vorbeistreichen eines Permanentmagneten.

Zum Download

Berechnung des magnetischen Flusses durch einen Würfel im Magnetfeld

Aufgabe ( Übungsaufgaben )

a) Berechne den magnetischen Fluss durch den Würfel. …

Zur Aufgabe
Aufgabe ( Übungsaufgaben )

a) Berechne den magnetischen Fluss durch den Würfel. …

Zur Aufgabe

Die vier fundamentalen Wechselwirkungen

Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel
Grundwissen

  • Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
  • Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
  • Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.

Zum Artikel Zu den Aufgaben

Elektrisches Feld und Feldliniendarstellung

Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Ladung herrscht ein elektrisches Feld. Dieses elektrische Feld überträgt die Kraftwirkung dieser Ladung auf andere Ladungen.
  • Die elektrische Feldstärke ist definiert als der Quotient aus der elektrischen Kraft \({\vec F_{\rm{el}}}\) auf eine Probeladung und der Probeladung \(q\): \(\vec E = \frac{{{{\vec F}_{\rm{el}}}}}{q}\).
  • Für die elektrische Feldstärke \(\vec E\) im Raum um eine punktförmige Ladung \(Q\) gilt: Der Feldstärkevektor ist für eine positive Ladung radial von der Ladung weg und für eine negative Ladung radial zur Ladung hin orientiert, der Betrag ist umgekehrt proportional zum Quadrat des Abstands \(r\) und hat den Wert \(E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\left|Q\right|}{r^2}\).
  • Die elektrische Feldstärke \(\vec E\) im Zwischenraum zweier entgegengesetzt geladener Platten (Flächeninhalt \(A\), Ladung \(Q\)) ist konstant (homogenes elektrisches Feld). Der Feldstärkevektor steht senkrecht zu den Plattenoberflächen, ist von der positiv zur negativ geladenen Platte orientiert und hat den Betrag \(E = \frac{1}{\varepsilon_0} \cdot \frac{\left|Q\right|}{A}\).

Zum Artikel Zu den Aufgaben

Elektrizitätslehre

Ströme & magnetisches Feld

Zum Themenbereich
Themenbereich

Anomalie des Wassers

Versuche

Mit dem hier dargestellten Versuch kann die Volumenausdehnung von Wasser bei Abkühlung von ca. \(14^\circ {\rm{C}}\) auf \(0^\circ {\rm{C}}\) untersucht und damit die Anomalie des Wassers nachgewiesen werden.

Zum Artikel
Versuche

Mit dem hier dargestellten Versuch kann die Volumenausdehnung von Wasser bei Abkühlung von ca. \(14^\circ {\rm{C}}\) auf \(0^\circ {\rm{C}}\) untersucht und damit die Anomalie des Wassers nachgewiesen werden.

Zum Artikel Zu den Aufgaben

Elektrische Klingel

Ausblick

  • Kern einer klassischen Klingel ist ein Elektromagnet
  • Durch clever Schaltung wird dieser abwechselnd ein- und ausgeschaltet

Zum Artikel
Ausblick

  • Kern einer klassischen Klingel ist ein Elektromagnet
  • Durch clever Schaltung wird dieser abwechselnd ein- und ausgeschaltet

Zum Artikel Zu den Aufgaben

Das Prinzip der Vereinfachung

Grundwissen

  • Ein Ziel der modernen Physik ist eine einheitliche Theorie zur Beschreibung aller Phänomene in der Welt zu finden.
  • Dazu werden schrittweise Theorien wie z.B. die Fallgesetze auf der Erde und die Bewegung der Planeten mit einer einheitlichen Theorie beschrieben, hier der universellen Gravitation.

Zum Artikel
Grundwissen

  • Ein Ziel der modernen Physik ist eine einheitliche Theorie zur Beschreibung aller Phänomene in der Welt zu finden.
  • Dazu werden schrittweise Theorien wie z.B. die Fallgesetze auf der Erde und die Bewegung der Planeten mit einer einheitlichen Theorie beschrieben, hier der universellen Gravitation.

Zum Artikel Zu den Aufgaben