Direkt zum Inhalt
Suchergebnisse 1 - 30 von 462

Magnetfeld und Feldlinien

Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel
Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel Zu den Aufgaben

Modell der Elementarmagnete

Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel
Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel Zu den Aufgaben

Modellversuch zur Magnetisierung

Versuche
Versuche

Magnetische Wirkung des elektrischen Stroms

Grundwissen

  • Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
  • Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
  • Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
  • Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
  • Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.

Zum Artikel Zu den Aufgaben

ØRSTED-Versuch

Versuche

  • Fließt durch einen Leiter Strom, so erzeugt dieser Strom ein Magnetfeld in der Umgebung des Leiters.
  • Je größer der Stromfluss durch den Leiter, desto stärker ist die magnetische Wirkung bzw. das Magnetfeld.
  • Die Richtung des Stromflusses beeinflusst die Richtung der magnetischen Wirkung bzw. die Richtung des Magnetfeldes.

Zum Artikel
Versuche

  • Fließt durch einen Leiter Strom, so erzeugt dieser Strom ein Magnetfeld in der Umgebung des Leiters.
  • Je größer der Stromfluss durch den Leiter, desto stärker ist die magnetische Wirkung bzw. das Magnetfeld.
  • Die Richtung des Stromflusses beeinflusst die Richtung der magnetischen Wirkung bzw. die Richtung des Magnetfeldes.

Zum Artikel Zu den Aufgaben

Eigenschaften von Permanentmagneten

Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben

Magnetfeld eines geraden Leiters (Versuch)

Versuche

  • Veranschaulichung der kreisförmigen Struktur des Magnetfeldes um einen geraden, stromdurchflossenen Leiter
  • Bestimmung der Magnetfeldrichtung mittels der "Rechte-Faust-Regel" bzw. "Linke-Faust-Regel"

Zum Artikel
Versuche

  • Veranschaulichung der kreisförmigen Struktur des Magnetfeldes um einen geraden, stromdurchflossenen Leiter
  • Bestimmung der Magnetfeldrichtung mittels der "Rechte-Faust-Regel" bzw. "Linke-Faust-Regel"

Zum Artikel Zu den Aufgaben

Feld von Stab- und Elektromagnet - Simulation

Versuche
Versuche

Kraft auf stromführende Leiter im Magnetfeld

Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf stromdurchflossene Leiter im Magnetfeld wirkt im Allgemeinen eine Kraft.
  • Die Kraftrichtung kannst du mit der Drei-Finger-Regel der rechten Hand bestimmen.
  • Wenn Stromrichtung und Magnetfeldrichtung parallel bzw. antiparallel verlaufen, wirkt keine Kraft.

Zum Artikel Zu den Aufgaben

Magnetische Influenz

Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben

Felder von Dauermagneten (Schülerversuch)

Versuche

Abb. 1 Mit Hilfe von Eisenfeilspänen werden die Magnetfeldlinien sichtbar.

Ziel des Versuchs: Herstellung verschiedener Feldlinienbilder mittels Dauermagneten und Eisenfeilspänen

Zum Artikel
Versuche

Abb. 1 Mit Hilfe von Eisenfeilspänen werden die Magnetfeldlinien sichtbar.

Ziel des Versuchs: Herstellung verschiedener Feldlinienbilder mittels Dauermagneten und Eisenfeilspänen

Zum Artikel Zu den Aufgaben

Dauermagnetismus - Heimversuche

Versuche
Versuche

Untersuchung der Strontium-90-Strahlung

Versuche
Versuche

Induktion durch Änderung der magnetischen Feldstärke

Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldstärkevektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldstärkvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Feldstärke \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

In einer Induktionsanordnung gelten folgende Bedingungen:

  • die Richtung des magnetischen Feldstärkevektors \(\vec B\) des homogenen magnetischen Feldes ist konstant
  • der Flächenvektor \(\vec A\) der (Teil-)Fläche der Leiterschleife oder der Spule mit Windungszahl \(N\), die sich im magnetischen Feld befindet, ist konstant
  • die Weite \(\varphi\) des Winkels zwischen dem Feldstärkvektor \(\vec B\) und dem Flächenvektor \(\vec A\) ist damit ebenfalls konstant.

Wenn sich die magnetische Feldstärke \(B\) mit der Änderungsrate \(\frac{dB}{dt}\) ändert, dann berechnet sich die Induktionsspannung \(U_{\rm{i}}\) durch \(U_{\rm{i}}\left(t\right) =  - N \cdot \frac{dB}{dt} \cdot A \cdot \cos\left(\varphi\right)\).

Zum Artikel Zu den Aufgaben

Magnetfelder von Zylinderspulen

Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes magnetisches Feld.Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag der magnetischen Feldstärke \(B\) im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag der magnetischen Feldstärke \(B\) im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch eine lange Zylinderspule ein elektrischer Strom fließt, dann herrscht im Innenraum der Spule ein homogenes magnetisches Feld.Die Feldlinien verlaufen dort parallel zur Zylinderachse.
  • Die Orientierung des magnetischen Feldes kann man mit der zweiten Rechte-Faust-Regel bestimmen.
  • Ist \(N\) die Anzahl der Windungen und \(l\) die Länge der Spule sowie \(I\) die Stärke des Stroms durch die Spule, dann berechnet sich der Betrag der magnetischen Feldstärke \(B\) im Innenraum der Spule durch \(B = {\mu _0} \cdot \frac{N}{l} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).
  • Befindet sich im Innenraum der langen Zylinderspule ein Kern aus einem ferromagnetischen Stoff mit der relativen Permeabilität \(\mu_{\rm{r}}\), dann berechnet sich der Betrag der magnetischen Feldstärke \(B\) im Innenraum der Spule durch \(B = \mu _0 \cdot \mu_{\rm{r}} \cdot \frac{N}{l} \cdot I\).

Zum Artikel Zu den Aufgaben

Magnetisierung

Versuche

  • Aufnahme der Hysteresekurve eines Weicheisenkerns

Zum Artikel
Versuche

  • Aufnahme der Hysteresekurve eines Weicheisenkerns

Zum Artikel Zu den Aufgaben

Michael FARADAY (1791 - 1867)

Geschichte
Geschichte

Elektromagnetische Wellen vom Dipol

Versuche
Versuche

Kraftmessung mit der Stromwaage

Versuche

Definition der Stärke des Magnetfeldes bzw. der magnetischen Flussdichte \(B\).

Zum Artikel
Versuche

Definition der Stärke des Magnetfeldes bzw. der magnetischen Flussdichte \(B\).

Zum Artikel Zu den Aufgaben

Plasmaeinschluss durch Magnetfelder

Ausblick
Ausblick

Kalibrieren eines Elektromagneten

Versuche

  • Dieser Versuch zeigt das Kalibrieren eines Elektromagneten.

Zum Artikel
Versuche

  • Dieser Versuch zeigt das Kalibrieren eines Elektromagneten.

Zum Artikel Zu den Aufgaben

Magnetfeld eines geraden Leiters

Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des magnetischen Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Feldstärke \(B\) durch \(B = {\mu _0} \cdot \frac{1}{{2 \cdot \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn durch einen geraden und sehr langen Leiter ein elektrischer Strom fließt, dann haben die Feldlinien des magnetischen Feldes die Form von Kreisen, die in Ebenen senkrecht zu dem Leiter verlaufen und ihren Mittelpunkt im Leiter haben.
  • Die Orientierung des magnetischen Feldes kann man mit der ersten Rechte-Faust-Regel bestimmen.
  • Ist \(I\) die Stärke des Stroms im Leiter und \(r\) der Abstand eines Punktes zum Leiter, dann berechnet sich der Betrag der magnetischen Feldstärke \(B\) durch \(B = {\mu _0} \cdot \frac{1}{{2 \cdot \pi \cdot r}} \cdot I\) mit der magnetischen Feldkonstanten \(\mu_0=1{,}2566\cdot 10^{-6}\,\rm{\frac{N}{A^2}}\).

Zum Artikel Zu den Aufgaben