Suchergebnis für:
Wellenbad
Joachim Herz Stiftung Abb. 1. Skizze zur Aufgabe.In einem Schwimmbecken ist ein großer Gummiball eingebaut, der sich auf- und ab bewegt und so…
Zur AufgabeJoachim Herz Stiftung Abb. 1. Skizze zur Aufgabe.In einem Schwimmbecken ist ein großer Gummiball eingebaut, der sich auf- und ab bewegt und so…
Zur AufgabeTORRICELLI-Gleichung
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
Kavitation an der Schiffsschraube
me, CC BY-SA 3.0, via Wikimedia Commons Abb. 1 Durch Kavitation zerstörtes Laufrad einer FRANCIS-TurbineEin großes Problem in technischen…
Zur Aufgabeme, CC BY-SA 3.0, via Wikimedia Commons Abb. 1 Durch Kavitation zerstörtes Laufrad einer FRANCIS-TurbineEin großes Problem in technischen…
Zur AufgabeDruck-Rohrleitung
Ein großes Problem in technischen Anwendungen mit Fluiden stellt die Kavitation dar. Wird ein Fluid so stark beschleunigt, dass der Druck lokal unter…
Zur AufgabeEin großes Problem in technischen Anwendungen mit Fluiden stellt die Kavitation dar. Wird ein Fluid so stark beschleunigt, dass der Druck lokal unter…
Zur AufgabeAm Holzwerk
Am Tor eines Holzwerkes sind die Dichten verschiedener Holzarten für frisch gefällte Bäume angegeben: Fichte:…
Zur AufgabeAm Tor eines Holzwerkes sind die Dichten verschiedener Holzarten für frisch gefällte Bäume angegeben: Fichte:…
Zur AufgabeDruck - Formelumstellung
Um Aufgaben zum Druck zu lösen musst du häufig die Gleichung \({F_{\rm{D}}} = p \cdot A\) nach einer Größe auflösen, die unbekannt ist. Wie du das…
Zur AufgabeUm Aufgaben zum Druck zu lösen musst du häufig die Gleichung \({F_{\rm{D}}} = p \cdot A\) nach einer Größe auflösen, die unbekannt ist. Wie du das…
Zur AufgabeKugelfallviskosimeter
Mit dem Kugelfallviskosimeter kann die Viskosität NEWTONscher Flüssigkeiten oder Gase sehr genau bestimmt werden. Eine Kugel fällt in dem zu…
Zur AufgabeMit dem Kugelfallviskosimeter kann die Viskosität NEWTONscher Flüssigkeiten oder Gase sehr genau bestimmt werden. Eine Kugel fällt in dem zu…
Zur AufgabeSchwerdedruck - Formelumstellung
Um Aufgaben zum Schweredruck zu lösen musst du häufig die Gleichung \(p=\rho \cdot g \cdot h\) nach einer Größe, die unbekannt ist, auflösen. Wie du…
Zur AufgabeUm Aufgaben zum Schweredruck zu lösen musst du häufig die Gleichung \(p=\rho \cdot g \cdot h\) nach einer Größe, die unbekannt ist, auflösen. Wie du…
Zur AufgabeDynamischer Auftrieb und \(c_{\rm{A}}\)-Wert
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
Golf 7
Beim neuen Golf 7 wird ein \(c_{\rm{w}}\)-Wert von \(0{,}25\) und eine Stirnfläche von \(2{,}19\,\rm{m}^2\) angegeben. Die maximale Leermasse…
Zur AufgabeBeim neuen Golf 7 wird ein \(c_{\rm{w}}\)-Wert von \(0{,}25\) und eine Stirnfläche von \(2{,}19\,\rm{m}^2\) angegeben. Die maximale Leermasse…
Zur AufgabeStrömungswiderstand und \(c_{\rm{w}}\)-Wert
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
Segelflugzeug
Ein Segelflugzeug hat eine Gleitzahl von \(47\) bei einer Geschwindigkeit von \(100\,\frac{\rm{km}}{\rm{h}}\) und einer Flügelfläche von \(17{,}6…
Zur AufgabeEin Segelflugzeug hat eine Gleitzahl von \(47\) bei einer Geschwindigkeit von \(100\,\frac{\rm{km}}{\rm{h}}\) und einer Flügelfläche von \(17{,}6…
Zur AufgabeKleinflugzeug
Ein Kleinflugzeug hat folgende technische Daten: Tab. 1 Technische Daten eines Kleinflugzeugs Maximale…
Zur AufgabeEin Kleinflugzeug hat folgende technische Daten: Tab. 1 Technische Daten eines Kleinflugzeugs Maximale…
Zur AufgabeZeitmessung mit Hilfe eines Fadenpendels
Ein kurzes Video erklärt, wie das Fadenpendel in der katholischen Kirche zur universellen Zeitbestimmung genutzt wurde. Außerdem werden weitere Methoden zur Zeitbestimmung, z.B. mit einem Wanderstab, und ein Selbstversuch zur Exponentialschreibweise von Distanzen erläutert. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.
Zur Übersicht Zum externen WeblinkEin kurzes Video erklärt, wie das Fadenpendel in der katholischen Kirche zur universellen Zeitbestimmung genutzt wurde. Außerdem werden weitere Methoden zur Zeitbestimmung, z.B. mit einem Wanderstab, und ein Selbstversuch zur Exponentialschreibweise von Distanzen erläutert. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.
Zur Übersicht Zum externen WeblinkKräfte in Atomen und Kraftzerlegung im Kampfsport
Nach einer kurzen Erläuterung über Kräfte zwischen Atomen, zeigt dieses Video die Kräftezerlegung am Beispiel eines Wing-Tsjun-Kampfes. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.
Zur Übersicht Zum externen WeblinkNach einer kurzen Erläuterung über Kräfte zwischen Atomen, zeigt dieses Video die Kräftezerlegung am Beispiel eines Wing-Tsjun-Kampfes. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.
Zur Übersicht Zum externen WeblinkKraftzerlegung beim Kirchenbau, im Kampfsport und in Brücken
In diesem kurzen, aber gut erklärten Video, geht es um wirkende Kräfte beim Kirchenbau, ein Beispiel der Kraftzerlegung im Kampfsport und Brückenkonstruktionen mit Kraftdreiecken. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.
Zur Übersicht Zum externen WeblinkIn diesem kurzen, aber gut erklärten Video, geht es um wirkende Kräfte beim Kirchenbau, ein Beispiel der Kraftzerlegung im Kampfsport und Brückenkonstruktionen mit Kraftdreiecken. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.
Zur Übersicht Zum externen WeblinkNewtonsche Axiome
Die drei Newtonschen Axiome werden anhand von Beispielen aus der Astronomie, dem Kampfsport und dem Alltag erklärt. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.
Zur Übersicht Zum externen WeblinkDie drei Newtonschen Axiome werden anhand von Beispielen aus der Astronomie, dem Kampfsport und dem Alltag erklärt. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.
Zur Übersicht Zum externen WeblinkGeschwindigkeit, Beschleunigung und Impuls
Dieses Video schließt an die Erläuterungen zu den Newtonschen Axiomen an und erklärt die Kräfte, Beschleunigungen und Impulse, die den One-Inch-Punch aus der chinesischen Kampfkunst Wing-Tsjun ermöglichen. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.
Zur Übersicht Zum externen WeblinkDieses Video schließt an die Erläuterungen zu den Newtonschen Axiomen an und erklärt die Kräfte, Beschleunigungen und Impulse, die den One-Inch-Punch aus der chinesischen Kampfkunst Wing-Tsjun ermöglichen. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität Köln.
Zur Übersicht Zum externen WeblinkVideo zum Foucaultschen Pendel
Ein kurzes Video, das den Versuchsaufbau des Foucaultschen Pendels aus den Blickwinkeln verschiedener Koordinatensysteme zeigt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkEin kurzes Video, das den Versuchsaufbau des Foucaultschen Pendels aus den Blickwinkeln verschiedener Koordinatensysteme zeigt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkVideo zum Versuch Kugelstoßpendel
Dieses Video zeigt das Kugelstoßpendel (Newtonpendel) aus verschiedenen Perspektiven und eignet sich zur Erklärung des elastischen Stoßes. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkDieses Video zeigt das Kugelstoßpendel (Newtonpendel) aus verschiedenen Perspektiven und eignet sich zur Erklärung des elastischen Stoßes. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkVideo zum Auftrieb eines schwimmenden Balls
Das Video zeigt einen schwimmenden Ball in einem Behältnis voll Wasser. Anhand der verdrängten Menge Flüssigkeit kann der, auf den Ball wirkende, Auftrieb bestimmt werden. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkDas Video zeigt einen schwimmenden Ball in einem Behältnis voll Wasser. Anhand der verdrängten Menge Flüssigkeit kann der, auf den Ball wirkende, Auftrieb bestimmt werden. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkVideo eines gekoppelten Fadenpendels
Das Video zeigt den Aufbau eines gekoppelten Pendels aus mehreren Fadenpendeln. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkDas Video zeigt den Aufbau eines gekoppelten Pendels aus mehreren Fadenpendeln. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkVideo zu Hebeln und Drehbewegungen im Alltag und in der Kampfkunst
Dieses Video zeigt anschauliche Beispiele für die Nutzung von Drehmomenten im Alltag und in der Kampfkunst. Es regt zum Mitmachen und Mitrechnen an. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.
Zur Übersicht Zum externen WeblinkDieses Video zeigt anschauliche Beispiele für die Nutzung von Drehmomenten im Alltag und in der Kampfkunst. Es regt zum Mitmachen und Mitrechnen an. Das Video stammt von Prof. André Bresges, Professor für Physik an der Universität zu Köln.
Zur Übersicht Zum externen WeblinkVideo zu Schwingungsdauer eines Fadenpendels
Dieses kurze Video beantwortet illustrativ die Frage, von welcher physikalischen Größe die Schwingungsdauer eines Fadenpendels abhängt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkDieses kurze Video beantwortet illustrativ die Frage, von welcher physikalischen Größe die Schwingungsdauer eines Fadenpendels abhängt. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkVideo zu klassischen mechanisch schwingenden Systemen
Das Video zeigt drei klassische schwingende Systeme: Das Fadenpendel, die Blattfeder und den Federschwinger. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkDas Video zeigt drei klassische schwingende Systeme: Das Fadenpendel, die Blattfeder und den Federschwinger. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkVideo zur Dämpfung mechanischer Schwingungen
Dieses kurze Video illustriert verschiedene Arten ein Federpendel zu dämpfen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkDieses kurze Video illustriert verschiedene Arten ein Federpendel zu dämpfen. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkVideo zu rotierenden Flüssigkeiten
Dieses Video illustriert die Zentrifugalkraft anhand einer rotierenden Flüssigkeit. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkDieses Video illustriert die Zentrifugalkraft anhand einer rotierenden Flüssigkeit. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkVideo zum variablen G-Pendel
Dieses Video zeigt den Einfluss des Ortsfaktors auf die Schwingung eines Schwerependels. Das Pendel kann so gedreht werden, dass es waagrecht zum Boden schwingt und der Beitrag der Gravitation vernachlässigbar wird. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkDieses Video zeigt den Einfluss des Ortsfaktors auf die Schwingung eines Schwerependels. Das Pendel kann so gedreht werden, dass es waagrecht zum Boden schwingt und der Beitrag der Gravitation vernachlässigbar wird. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen Weblink