Suchergebnis für:
Video aus einer Nebelkammer
Das Video zeigt Aufnahmen aus einer Diffusionsnebelkammer. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkDas Video zeigt Aufnahmen aus einer Diffusionsnebelkammer. Das Video wurde von der Ecole Science als Open Educational Resource (OER) veröffentlicht.
Zur Übersicht Zum externen WeblinkZerfallsgesetz, Zerfallskonstante und Halbwertszeit
- Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
- Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda \cdot t}} = \lambda \cdot {N_0} \cdot {e^{ - \lambda \cdot t}}\).
- Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
- Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).
- Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
- Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda \cdot t}} = \lambda \cdot {N_0} \cdot {e^{ - \lambda \cdot t}}\).
- Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
- Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).
Auswerten von Zerfallskurven
- Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
- Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.
- Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
- Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.
Zerfallsgesetz - Formelumstellung
a) Das Kobaltisotop Co-60 ist ein \(\beta^-\)-Strahler mit der Halbwertszeit \(5{,}3\,\rm{a}\). Ein…
Zur Aufgabea) Das Kobaltisotop Co-60 ist ein \(\beta^-\)-Strahler mit der Halbwertszeit \(5{,}3\,\rm{a}\). Ein…
Zur AufgabeZerfall des Kobaltisotiops Co-60
Das Kobaltisotop Co-60 ist ein \(\beta^-\)-Strahler mit der Halbwertszeit \(5{,}3\,\rm{a}\). Ein radioaktives Präparat soll \(1{,}0\,\rm{\mu g}\)…
Zur AufgabeDas Kobaltisotop Co-60 ist ein \(\beta^-\)-Strahler mit der Halbwertszeit \(5{,}3\,\rm{a}\). Ein radioaktives Präparat soll \(1{,}0\,\rm{\mu g}\)…
Zur AufgabeAuswerten von Absorptionskurven
- Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
- Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.
- Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
- Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.
Alpha-Zerfall von Polonium 210
Joachim Herz Stiftung Abb. 1 Zerfallsschema von Po-210Polonium 210 (Po-210) ist ein radioaktives Poloniumisotop, das mit einer Halbwertszeit…
Zur AufgabeJoachim Herz Stiftung Abb. 1 Zerfallsschema von Po-210Polonium 210 (Po-210) ist ein radioaktives Poloniumisotop, das mit einer Halbwertszeit…
Zur AufgabeBeta-Minus-Zerfall von Scandium 47
Joachim Herz Stiftung Abb. 1 Zerfallsschema von Sc-47Scandium 47 (Sc-47) ist ein radioaktives Scandiumisotop, das mit einer Halbwertszeit von…
Zur AufgabeJoachim Herz Stiftung Abb. 1 Zerfallsschema von Sc-47Scandium 47 (Sc-47) ist ein radioaktives Scandiumisotop, das mit einer Halbwertszeit von…
Zur AufgabeBeta-Plus-Zerfall von Natrium 22
Joachim Herz Stiftung Abb. 1 Zerfallsschema von Na-22Natrium 22 (Na-22) ist ein radioaktives Natriumisotop, das mit einer Halbwertszeit von…
Zur AufgabeJoachim Herz Stiftung Abb. 1 Zerfallsschema von Na-22Natrium 22 (Na-22) ist ein radioaktives Natriumisotop, das mit einer Halbwertszeit von…
Zur AufgabeEC-Prozess bei Kalium 40
Joachim Herz Stiftung Abb. 1 EC-Zerfallsschema von K-40Kalium 40 (K-40) ist ein radioaktives Kaliumisotop, das in \(10{,}72\%\) aller Fälle…
Zur AufgabeJoachim Herz Stiftung Abb. 1 EC-Zerfallsschema von K-40Kalium 40 (K-40) ist ein radioaktives Kaliumisotop, das in \(10{,}72\%\) aller Fälle…
Zur AufgabeIonisierende Strahlung radioaktiver Stoffe
Seit 2018 werden, orientiert am Kernlehrplan Physik für die gymnasiale Oberstufe und insbesondere an den dort hervorgehobenen Experimenten, digitale Unterstützungsmaterialien zum Lehren und Lernen im Physikunterricht konzipiert. Dabei werden fortlaufend in Zusammenarbeit mit einer Arbeitsgruppe bei QUA-LiS NRW und der Freien Universität Berlin interaktive Bildschirmexperimente (IBEs) entwickelt, welche in lehrplankonforme Lernumgebungen eingebettet sind.
Interaktive Bildschirmexperimente stellen eine Ergänzung zu den im Unterricht real durchgeführten Experimenten dar. Sie können und sollen den Mehrwert einer realen Versuchsdurchführung nicht ersetzen. Die Materialien sind durch Hilfen zu den Aufgaben auf der einen Seite und durch Exkurse und Vertiefungen auf der anderen Seite insbesondere auch für binnendifferenzierende Unterrichtsvorhaben besonders geeignet.
Seit 2018 werden, orientiert am Kernlehrplan Physik für die gymnasiale Oberstufe und insbesondere an den dort hervorgehobenen Experimenten, digitale Unterstützungsmaterialien zum Lehren und Lernen im Physikunterricht konzipiert. Dabei werden fortlaufend in Zusammenarbeit mit einer Arbeitsgruppe bei QUA-LiS NRW und der Freien Universität Berlin interaktive Bildschirmexperimente (IBEs) entwickelt, welche in lehrplankonforme Lernumgebungen eingebettet sind.
Interaktive Bildschirmexperimente stellen eine Ergänzung zu den im Unterricht real durchgeführten Experimenten dar. Sie können und sollen den Mehrwert einer realen Versuchsdurchführung nicht ersetzen. Die Materialien sind durch Hilfen zu den Aufgaben auf der einen Seite und durch Exkurse und Vertiefungen auf der anderen Seite insbesondere auch für binnendifferenzierende Unterrichtsvorhaben besonders geeignet.
Zerfall des Kaons K-Null
Die Kaonen - es gibt davon 4 Stück, das \(\rm{K^o}\), das \(\rm{K^+}\), das \(\rm{K^-}\) und das \(\overline {\rm{K^o}}\) - wurden 1947 von George…
Zur AufgabeDie Kaonen - es gibt davon 4 Stück, das \(\rm{K^o}\), das \(\rm{K^+}\), das \(\rm{K^-}\) und das \(\overline {\rm{K^o}}\) - wurden 1947 von George…
Zur AufgabeZerfall des Kaons K-Minus
Die Kaonen - es gibt davon 4 Stück, das \(\rm{K^o}\), das \(\rm{K^+}\), das \(\rm{K^-}\) und das \(\overline {\rm{K^o}}\) - wurden 1947 von George…
Zur AufgabeDie Kaonen - es gibt davon 4 Stück, das \(\rm{K^o}\), das \(\rm{K^+}\), das \(\rm{K^-}\) und das \(\overline {\rm{K^o}}\) - wurden 1947 von George…
Zur AufgabeZerfall des Kaons K-Plus
Die Kaonen - es gibt davon 4 Stück, das \(\rm{K^o}\), das \(\rm{K^+}\), das \(\rm{K^-}\) und das \(\overline {\rm{K^o}}\) - wurden 1947 von George…
Zur AufgabeDie Kaonen - es gibt davon 4 Stück, das \(\rm{K^o}\), das \(\rm{K^+}\), das \(\rm{K^-}\) und das \(\overline {\rm{K^o}}\) - wurden 1947 von George…
Zur AufgabeZerfall des Kaons Anti-K-Null
Die Kaonen - es gibt davon 4 Stück, das \(\rm{K^o}\), das \(\rm{K^+}\), das \(\rm{K^-}\) und das \(\overline {\rm{K^o}}\) - wurden 1947 von…
Zur AufgabeDie Kaonen - es gibt davon 4 Stück, das \(\rm{K^o}\), das \(\rm{K^+}\), das \(\rm{K^-}\) und das \(\overline {\rm{K^o}}\) - wurden 1947 von…
Zur AufgabeSammlung interaktiver Experimente zur ionisierenden Strahlung
Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) zeigt Experimente zur Beobachtung der drei Arten ionisierender Strahlung, und der Absorbtion der Strahlungen durch verschiedene Medien. Außerdem werden Wechselwirkungen der ionisierenden Strahlung mit Materie und deren Auswirkungen auf den menschlichen Organismus untersucht.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.
Diese Sammlung an interaktiven Bildschirmexperimenten (IBE) zeigt Experimente zur Beobachtung der drei Arten ionisierender Strahlung, und der Absorbtion der Strahlungen durch verschiedene Medien. Außerdem werden Wechselwirkungen der ionisierenden Strahlung mit Materie und deren Auswirkungen auf den menschlichen Organismus untersucht.
Zwischen den Experimenten könnt ihr durch Anklicken der Themen oder mit den Pfeilen unten rechts und links auf der Seite navigieren. Diese Experimente stammen von der AG Didaktik der Physik der Universität Berlin.
Potentialtopfmodell (Fermi-Gas-Modell)
- Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
- Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
- Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.
- Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
- Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
- Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.
Podcastfolge über elektromagnetische Kraft
In dieser Podcastfolge von der Welt der Physik geht es um die elektromagnetische Kraft und ihre Rolle in unserem Alltag.
Zur Übersicht Zum externen WeblinkIn dieser Podcastfolge von der Welt der Physik geht es um die elektromagnetische Kraft und ihre Rolle in unserem Alltag.
Zur Übersicht Zum externen WeblinkPodcastfolge über schwache Wechselwirkung
In dieser Podcastfolge von der Welt der Physik geht es um die schwache Wechselwirkung und ihre Rolle im Universum.
Zur Übersicht Zum externen WeblinkIn dieser Podcastfolge von der Welt der Physik geht es um die schwache Wechselwirkung und ihre Rolle im Universum.
Zur Übersicht Zum externen WeblinkPodcastfolge über starke Wechselwirkung
In dieser Podcastfolge von der Welt der Physik geht es um die starke Wechselwirkung und ihre Funktion bei der Bindung von Protonen und Neutronen im Atomkern sowie zwischen ihnen selbst.
Zum externen WeblinkIn dieser Podcastfolge von der Welt der Physik geht es um die starke Wechselwirkung und ihre Funktion bei der Bindung von Protonen und Neutronen im Atomkern sowie zwischen ihnen selbst.
Zum externen WeblinkPodcastfolge über Gravitation
In dieser Podcastfolge von der Welt der Physik geht es um die Gravitation. Es wird erklärt, warum es sich bei der Gravitation um die vermutlich mysteriöseste unter den vier fundamentalen Kräfte der Natur handelt.
Zur Übersicht Zum externen WeblinkIn dieser Podcastfolge von der Welt der Physik geht es um die Gravitation. Es wird erklärt, warum es sich bei der Gravitation um die vermutlich mysteriöseste unter den vier fundamentalen Kräfte der Natur handelt.
Zur Übersicht Zum externen WeblinkZerfall von Uran
Vor ca. 6,0 Milliarden Jahren waren die beiden Uran-Isotope \({}^{238}{\rm{U}}\) und \({}^{235}{\rm{U}}\) in etwa gleicher Menge vorhanden. Das für…
Zur AufgabeVor ca. 6,0 Milliarden Jahren waren die beiden Uran-Isotope \({}^{238}{\rm{U}}\) und \({}^{235}{\rm{U}}\) in etwa gleicher Menge vorhanden. Das für…
Zur AufgabeZerfall von Americium (Abitur BY 2003 GK A4-1)
Americium-241 ist ein \(\alpha\)-Strahler mit einer Halbwertszeit von \(T_{1/2}=4{,}3\cdot10^2\,\rm{a}\). Die Energie der \(\alpha\)-Strahlung beträgt…
Zur AufgabeAmericium-241 ist ein \(\alpha\)-Strahler mit einer Halbwertszeit von \(T_{1/2}=4{,}3\cdot10^2\,\rm{a}\). Die Energie der \(\alpha\)-Strahlung beträgt…
Zur Aufgabe