Direkt zum Inhalt
Suchergebnisse 2311 - 2340 von 2368

Welle - Teilchen - Dualismus

Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel
Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel Zu den Aufgaben

Statistische Deutung

Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel
Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel Zu den Aufgaben

de-BROGLIE-Wellenlänge

Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben

EINSTEINs Theorie des Lichts

Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben

Quantenobjekte

Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben
Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenszüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben

COMPTON-Effekt

Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben
Grundwissen

Joachim Herz Stiftung
  • Der COMPTON-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.
  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_{\rm{C}} \cdot (1-\cos\left(\vartheta\right)).\]
  • Die COMPTON-Wellenlänge \(\lambda_{\rm{C}}\) für Elektronen ist \[\lambda_{\rm{C,e}} =\frac{h}{m_{e}\cdot c} = 2{,}43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben

Die Heisenbergsche Unbestimmtheitsrelation

Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunbestimmtheit kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben

Erklärungsprobleme des Photoeffekts

Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel
Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Elektronen an Kristallgittern

Grundwissen

  • De BROGLIEs theoretische Überlegungen zur Wellennatur von Materie konnten 1927 von den amerikanischen Physikern Clinton Joseph DAVISSON und Lester Halbert GERMER sowie unabhängig davon vom englischen Physiker George Paget THOMSON durch die Elektronenbeugung an Kristallen bestätigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • De BROGLIEs theoretische Überlegungen zur Wellennatur von Materie konnten 1927 von den amerikanischen Physikern Clinton Joseph DAVISSON und Lester Halbert GERMER sowie unabhängig davon vom englischen Physiker George Paget THOMSON durch die Elektronenbeugung an Kristallen bestätigt werden.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Elektronen außerhalb von Materie

Grundwissen

  • Die Wellennatur von Materie konnte zwischen 1955 und 1957 von MÖLLENSTEDT und seinen Schülern DÜKER und JÖNSSON auch beim Durchgang von Elektronen durch ein elektrisches Biprisma und sogar durch einen materiellen Doppelspalt bestätigt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wellennatur von Materie konnte zwischen 1955 und 1957 von MÖLLENSTEDT und seinen Schülern DÜKER und JÖNSSON auch beim Durchgang von Elektronen durch ein elektrisches Biprisma und sogar durch einen materiellen Doppelspalt bestätigt werden.

Zum Artikel Zu den Aufgaben

COMPTON-Effekt mit Gammastrahlung

Versuche
Versuche

Untersuchung der Photonenenergie mit Geradsichtprisma und Zink-Sulfid-Schirm

Versuche

  • Qualitativer Nachweis des Zusammenhangs zwischen der Farbe des Lichts und der Energie der zugehörigen Photonen

Zum Artikel
Versuche

  • Qualitativer Nachweis des Zusammenhangs zwischen der Farbe des Lichts und der Energie der zugehörigen Photonen

Zum Artikel Zu den Aufgaben

Untersuchung der Photonenenergie mit Leuchtdioden

Versuche

Eine qualitative Aussage über den Zusammenhang zwischen Photonenenergie und entsprechender Lichtfarbe gelingt experimentell fast noch einfacher als mit dem Prismenspektrum (Link am Ende dieses Artikels) mit Hilfe von Leuchtdioden.

Zum Artikel
Versuche

Eine qualitative Aussage über den Zusammenhang zwischen Photonenenergie und entsprechender Lichtfarbe gelingt experimentell fast noch einfacher als mit dem Prismenspektrum (Link am Ende dieses Artikels) mit Hilfe von Leuchtdioden.

Zum Artikel Zu den Aufgaben

Doppelspaltversuch von TAYLOR

Versuche

  • Nachweis von Beugung und Interferenz von Licht beim Durchgang durch einen Doppelspalt auch bei sehr kleinen Lichtintensitäten

Zum Artikel
Versuche

  • Nachweis von Beugung und Interferenz von Licht beim Durchgang durch einen Doppelspalt auch bei sehr kleinen Lichtintensitäten

Zum Artikel Zu den Aufgaben

COMPTON-Effekt (Simulation MintApps)

Versuche

  • Veranschaulichung des COMPTON-Effektes
  • Analyse mittels Impulsdiagramm

Zum Artikel
Versuche

  • Veranschaulichung des COMPTON-Effektes
  • Analyse mittels Impulsdiagramm

Zum Artikel Zu den Aufgaben

Trägheitsloses Einsetzen

Versuche
Versuche

Video zu Photoeffekt und CCD Kamera

Versuche
Versuche

Video zur Quantenmechanik

Versuche
Versuche

Simulationen zum Doppelspalt

Versuche
Versuche

Elektronenbeugungsröhre

Versuche

  • Verdeutlichung des Wellencharakters von Elektronen
  • Bestätigung der Aussagen von de-Broglie zur de-Broglie-Wellenlänge
  • Untersuchung des Aufbaus von Graphit

Zum Artikel
Versuche

  • Verdeutlichung des Wellencharakters von Elektronen
  • Bestätigung der Aussagen von de-Broglie zur de-Broglie-Wellenlänge
  • Untersuchung des Aufbaus von Graphit

Zum Artikel Zu den Aufgaben

Versuche von MERLI, MISSIROLI und POZZI bzw. von TONOMURA

Versuche

  • Beugung und Interferenz von Elektronen findet nicht nur bei vielen, sondern auch bei einzelnen Elektronen statt.

Zum Artikel
Versuche

  • Beugung und Interferenz von Elektronen findet nicht nur bei vielen, sondern auch bei einzelnen Elektronen statt.

Zum Artikel Zu den Aufgaben

Versuch von DAVISSON und GERMER

Versuche
Versuche

Doppelspaltversuch von JÖNSSON

Versuche

  • Nachweis der Welleneigenschaften von Elektronen

Zum Artikel
Versuche

  • Nachweis der Welleneigenschaften von Elektronen

Zum Artikel Zu den Aufgaben

Versuche von HALLWACHS mit dem Elektroskop

Versuche

  • Der Versuch zeigt den prinzipiellen Photoeffekt sowie die Abhängigkeit des Elektronenaustritts von Frequenz und Intensität des Lichts anhand der Beobachtung des Ausschlags eines Elektroskops

Zum Artikel
Versuche

  • Der Versuch zeigt den prinzipiellen Photoeffekt sowie die Abhängigkeit des Elektronenaustritts von Frequenz und Intensität des Lichts anhand der Beobachtung des Ausschlags eines Elektroskops

Zum Artikel Zu den Aufgaben

\(h\)-Bestimmung mit der Gegenfeldmethode

Versuche
Versuche

\(h\)-Bestimmung mit LEDs

Versuche
Versuche

Photonen im Gravitationsfeld

Versuche
Versuche

COMPTON-Effekt (qualitativ)

Versuche
Versuche