Direkt zum Inhalt
Suchergebnisse 91 - 120 von 144

Induktionsschleifen im Straßenverkehr

Ausblick
Ausblick

Galvanische Zellen und Batterien

Ausblick
Ausblick

Elektrochemische Spannungsreihe

Ausblick
Ausblick

Einsatz und Wirtschaftlichkeit von Solarzellen

Ausblick
Ausblick

Leuchtdioden (LED) - Fortführung

Ausblick
Ausblick

Herstellung von Transistoren mittels Planartechnik

Ausblick
Ausblick

Einschalten eines Stromkreises mit einer Spule (Theorie)

Ausblick
Ausblick

Ausschalten eines Stromkreises mit einer Spule (Theorie)

Ausblick
Ausblick

Aufladen eines Kondensators (Theorie)

Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Aufladen durch eine elektrische Quelle mit der Nennspannung \(U_0\) über einen Widerstand der Größe \(R\) wird beschrieben durch die inhomogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = \frac{{\left| {{U_0}} \right|}}{R}\) mit \(Q(0{\rm{s}}) = 0\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot \left( {1 - {e^{ - \frac{1}{{R \cdot C}} \cdot t}}} \right)\). Die Ladung auf dem Kondensator steigt also während des Aufladevorgangs exponentiell an.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel
Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Aufladen durch eine elektrische Quelle mit der Nennspannung \(U_0\) über einen Widerstand der Größe \(R\) wird beschrieben durch die inhomogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = \frac{{\left| {{U_0}} \right|}}{R}\) mit \(Q(0{\rm{s}}) = 0\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot \left( {1 - {e^{ - \frac{1}{{R \cdot C}} \cdot t}}} \right)\). Die Ladung auf dem Kondensator steigt also während des Aufladevorgangs exponentiell an.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Entladen eines Kondensators (Theorie)

Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Entladen über einen Widerstand der Größe \(R\) wird beschrieben durch die homogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = 0\) mit \(Q(0{\rm{s}}) = C \cdot \left| {{U_0}} \right|\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot e^{ - \frac{1}{R \cdot C} \cdot t}\). Die Ladung auf dem Kondensator fällt also während des Entladevorgangs exponentiell ab.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel
Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Entladen über einen Widerstand der Größe \(R\) wird beschrieben durch die homogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = 0\) mit \(Q(0{\rm{s}}) = C \cdot \left| {{U_0}} \right|\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot e^{ - \frac{1}{R \cdot C} \cdot t}\). Die Ladung auf dem Kondensator fällt also während des Entladevorgangs exponentiell ab.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Elektrostatische Beschleuniger

Ausblick

  • Im Van-de-Graaf-Beschleuniger sorgt ein mechanisch angetriebenes isolierendes Endlosband für die Beschleunigungsspannung.
  • Im Tandembeschleuniger wird die Spannung eines Van-de-Graaf-Beschleunigers durch Umladung zweimal ausgenutzt.

Zum Artikel
Ausblick

  • Im Van-de-Graaf-Beschleuniger sorgt ein mechanisch angetriebenes isolierendes Endlosband für die Beschleunigungsspannung.
  • Im Tandembeschleuniger wird die Spannung eines Van-de-Graaf-Beschleunigers durch Umladung zweimal ausgenutzt.

Zum Artikel Zu den Aufgaben