Suchergebnis für:
Ausblick
I-U-Kennlinien
Ausblick
- Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
- Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
- Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).
Ausblick
- Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
- Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
- Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).
Elektromagnetischer Schwingkreis stark gedämpft - aperiodischer Grenzfall (Theorie)
Ausblick
- Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
- Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)
Ausblick
- Im Fall \({\omega_0}^2 = \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten aperiodische Grenzfall.
- Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \left( {1 + \delta \cdot t} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\) und \(\delta = \frac{R}{2 \cdot L}\)
Elektromagnetischer Schwingkreis stark gedämpft - Kriechfall (Theorie)
Ausblick
- Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
- Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)
Ausblick
- Im Fall \({\omega_0}^2 < \delta^2\) ist die Schwingung stark gedämpft. Wir sprechen dann vom sogenannten Kriechfall.
- Die Differentialgleichung \((*)\) für die Ladung \(Q(t)\) auf der oberen Platte des Kondensators wird dann gelöst durch die Funktion \(Q(t) = \hat{Q} \cdot \frac{1}{{2 \cdot \lambda }}\left( {\left( {\lambda + \delta } \right) \cdot {e^{\lambda \cdot t}} + \left( {\lambda - \delta } \right) \cdot {e^{ - \lambda \cdot t}}} \right) \cdot {e^{ - \delta \cdot t}}\) mit \(\hat{Q}=Q_0\), \(\lambda = \sqrt {{\delta ^2} - {\omega_0}^2}\), \(\omega_0=\sqrt{\frac{1}{L \cdot C}}\) und \(\delta = \frac{R}{2 \cdot L}\)
Elektromagnetischer Schwingkreis ungedämpft (Modellbildung)
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich der ungedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.
Elektromagnetischer Schwingkreis gedämpft (Modellbildung)
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich der gedämpfte elektromagnetische Schwingkreis mit Hilfe der Methode der kleinen Schritte simulieren.
Aufladen eines Kondensators (Modellbildung)
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich das Aufladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.
Entladen eines Kondensators (Modellbildung)
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich das Entladen eines Kondensators mit Hilfe der Methode der kleinen Schritte simulieren.
Einschalten eines Stromkreises mit einer Spule (Modellbildung)
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich das Einschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich das Einschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.
Ausschalten eines Stromkreises mit einer Spule (Modellbildung)
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich das Ausschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.
Ausblick
- Auf Basis einer geeigneten Modellierung lässt sich das Ausschalten eines Stromkreises mit einer Spule mit Hilfe der Methode der kleinen Schritte simulieren.