Direkt zum Inhalt
Suchergebnisse 121 - 150 von 152

Federpendel ungedämpft (Modellbildung)

Ausblick
Ausblick

Entstehung von Erdbeben

Ausblick
Ausblick

Häufigkeit von Erdbeben

Ausblick
Ausblick

Seismische Wellen

Ausblick
Ausblick

Fallturm und Parabelflug

Ausblick
Ausblick

Feder-Schwere-Pendel ungedämpft (Modellbildung)

Ausblick
Ausblick

Erklärung der Brechung durch das Prinzip von HUYGENS

Ausblick
Ausblick

Erklärung der Reflexion durch das Prinzip von HUYGENS

Ausblick
Ausblick

Federpendel ungedämpft (Theorie)

Ausblick
Ausblick

Federpendel gedämpft (Theorie)

Ausblick
Ausblick

Federpendel gedämpft (Modellbildung)

Ausblick
Ausblick

Feder-Schwere-Pendel gedämpft (Modellbildung)

Ausblick
Ausblick

Kommunizierende Röhren im Alltag

Ausblick
Ausblick

Wurf nach unten (Modellbildung)

Ausblick
Ausblick

Wurf nach oben (Modellbildung)

Ausblick
Ausblick

Waagerechter Wurf (Modellbildung)

Ausblick
Ausblick

Zusammenhang zwischen Transversal- und Longitudinalwellen

Ausblick
Ausblick

Flüssigkeitspendel

Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel
Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel Zu den Aufgaben

Kettenpendel

Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel
Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel Zu den Aufgaben

Skater in der Halfpipe

Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel
Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel Zu den Aufgaben

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Doppeltes Federpendel

Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel
Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel Zu den Aufgaben

Raketenphysik mit der Tabellenkalkulation

Ausblick
Ausblick

Effektives Potential

Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel
Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel Zu den Aufgaben

Gravitationsfeldstärke und Ortsfaktor

Ausblick
Ausblick

VENTURI-Rohr

Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben