Direkt zum Inhalt
Suchergebnisse 211 - 240 von 246

Feder-Schwere-Pendel ungedämpft (Modellbildung)

Ausblick
Ausblick

Funktion von LCD-Displays

Ausblick

  • LCD-Displays nutzen Polfilter und senden linear polarisiertes Licht aus.
  • Zwischen zwei gekreuzten Polfiltern befinden sich Flüssigkristalle, die je nach Ausrichtung die Polarisationsebene des Lichtes verändern.
  • Es gibt inzwischen viele verschiedene Bauformen von LCD-Displays

Zum Artikel
Ausblick

  • LCD-Displays nutzen Polfilter und senden linear polarisiertes Licht aus.
  • Zwischen zwei gekreuzten Polfiltern befinden sich Flüssigkristalle, die je nach Ausrichtung die Polarisationsebene des Lichtes verändern.
  • Es gibt inzwischen viele verschiedene Bauformen von LCD-Displays

Zum Artikel Zu den Aufgaben

Erklärung der Brechung durch das Prinzip von HUYGENS

Ausblick
Ausblick

Erklärung der Reflexion durch das Prinzip von HUYGENS

Ausblick
Ausblick

Polfilter beim Fotografieren

Ausblick
Ausblick

Federpendel ungedämpft (Theorie)

Ausblick
Ausblick

Polarisation durch Streuung

Ausblick

  • Polarisiertes Licht wird in unterschiedlich stark in unterschiedliche Richtungen gestreut.
  • Zur Erklärung der Streuung werden die Ladungen des streuenden Atoms als elektrische Dipolantennen betrachtet.
  • Unpolarisiertes Licht ist nach der Streuung in bestimmten Richtungen linear polarisiert.

Zum Artikel
Ausblick

  • Polarisiertes Licht wird in unterschiedlich stark in unterschiedliche Richtungen gestreut.
  • Zur Erklärung der Streuung werden die Ladungen des streuenden Atoms als elektrische Dipolantennen betrachtet.
  • Unpolarisiertes Licht ist nach der Streuung in bestimmten Richtungen linear polarisiert.

Zum Artikel Zu den Aufgaben

Federpendel gedämpft (Theorie)

Ausblick
Ausblick

Federpendel gedämpft (Modellbildung)

Ausblick
Ausblick

Feder-Schwere-Pendel gedämpft (Modellbildung)

Ausblick
Ausblick

Dampfmaschine von WATT

Ausblick
Ausblick

FRESNEL-Linse

Ausblick
Ausblick

Kommunizierende Röhren im Alltag

Ausblick
Ausblick

Wurf nach unten (Modellbildung)

Ausblick
Ausblick

Wurf nach oben (Modellbildung)

Ausblick
Ausblick

Waagerechter Wurf (Modellbildung)

Ausblick
Ausblick

Zusammenhang zwischen Transversal- und Longitudinalwellen

Ausblick
Ausblick

Spektrum des Sonnenlichts

Ausblick
Ausblick

Flüssigkeitspendel

Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel
Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel Zu den Aufgaben

Kettenpendel

Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel
Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel Zu den Aufgaben

Skater in der Halfpipe

Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel
Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel Zu den Aufgaben

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schmelz- und Siedetemperaturen; Schmelz- und Verdampfungswärmen

Ausblick
Ausblick

Doppeltes Federpendel

Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel
Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel Zu den Aufgaben

Raketenphysik mit der Tabellenkalkulation

Ausblick
Ausblick