Direkt zum Inhalt
Suchergebnisse 451 - 471 von 471

Präzession und Nutation

Ausblick
Ausblick

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schmelz- und Siedetemperaturen; Schmelz- und Verdampfungswärmen

Ausblick
Ausblick

Doppeltes Federpendel

Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel
Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel Zu den Aufgaben

Raketenphysik mit der Tabellenkalkulation

Ausblick
Ausblick

Effektives Potential

Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel
Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel Zu den Aufgaben

Herleitung des ersten KEPLERschen Gesetzes

Ausblick

Das erste KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und dem Energieerhaltungssatz herleiten.

Zum Artikel
Ausblick

Das erste KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und dem Energieerhaltungssatz herleiten.

Zum Artikel Zu den Aufgaben

Herleitung des zweiten KEPLERschen Gesetzes

Ausblick

Das zweite KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft herleiten.

Zum Artikel
Ausblick

Das zweite KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft herleiten.

Zum Artikel Zu den Aufgaben

Herleitung des dritten KEPLERschen Gesetzes

Ausblick

Das dritte KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und einfachen Eigenschaften der Ellipsenbahnen der Trabanten herleiten.

Zum Artikel
Ausblick

Das dritte KEPLERsche Gesetz lässt sich aus der Drehimpulserhaltung bei der Bewegung von Trabanten um Zentralkörper unter dem Einfluss der Gravitationskraft und einfachen Eigenschaften der Ellipsenbahnen der Trabanten herleiten.

Zum Artikel Zu den Aufgaben

Funktionsprinzip von Leuchtstofflampen

Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel
Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel Zu den Aufgaben

Gravitationsfeldstärke und Ortsfaktor

Ausblick
Ausblick

VENTURI-Rohr

Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

PRANDTL-Rohr

Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

Hemmungspendel (Galilei-Pendel)

Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel
Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Theorie)

Ausblick
Ausblick

Weihnachtspyramide und Aufwindkraftwerk

Ausblick
Ausblick