Suchergebnis für:
Abbildungsfehler (Aberrationen)
Ausblick
- In der Praxis treten bei Abbildungen mit Linsen Abbildungsfehler auf.
- Sphärischen Aberration: Strahlen in unterschiedlichem Abstand von der optischen Achse schneiden sich nicht exakt in einem Punkt.
- Chromatische Aberration: Licht unterschiedlicher Farben wird unterschiedlich stark gebrochen.
Ausblick
- In der Praxis treten bei Abbildungen mit Linsen Abbildungsfehler auf.
- Sphärischen Aberration: Strahlen in unterschiedlichem Abstand von der optischen Achse schneiden sich nicht exakt in einem Punkt.
- Chromatische Aberration: Licht unterschiedlicher Farben wird unterschiedlich stark gebrochen.
Theoretische Herleitung der Formel für die potentielle Energie
Ausblick
- Um einen Körper der Masse \(m\) an einem Ort mit dem Ortsfaktor \(g\) vom Nullniveau Erdboden auf eine Höhe \(h\) anzuheben benötigt man die Arbeit \(W=m \cdot g \cdot h\).
- Damit beträgt die potentielle Energie \(E_{\rm{pot}}\) des Systems "Erde-Körper" nach dem Anheben \(E_{\rm{pot}}=m \cdot g \cdot h\).
Ausblick
- Um einen Körper der Masse \(m\) an einem Ort mit dem Ortsfaktor \(g\) vom Nullniveau Erdboden auf eine Höhe \(h\) anzuheben benötigt man die Arbeit \(W=m \cdot g \cdot h\).
- Damit beträgt die potentielle Energie \(E_{\rm{pot}}\) des Systems "Erde-Körper" nach dem Anheben \(E_{\rm{pot}}=m \cdot g \cdot h\).
Theoretische Herleitung der Formel für die kinetische Energie
Ausblick
- Um einen Körper der Masse \(m\) aus der Ruhe auf eine Geschwindigkeit \(v\) zu beschleunigen benötigt man die Arbeit \(W= \frac{1}{2} \cdot m \cdot v^2\).
- Damit beträgt die kinetische Energie \(E_{\rm{kin}}\) eines Körpers nach dem Beschleunigen \(E_{\rm{kin}}=\frac{1}{2} \cdot m \cdot v^2\).
Ausblick
- Um einen Körper der Masse \(m\) aus der Ruhe auf eine Geschwindigkeit \(v\) zu beschleunigen benötigt man die Arbeit \(W= \frac{1}{2} \cdot m \cdot v^2\).
- Damit beträgt die kinetische Energie \(E_{\rm{kin}}\) eines Körpers nach dem Beschleunigen \(E_{\rm{kin}}=\frac{1}{2} \cdot m \cdot v^2\).
Theoretische Herleitung der Formel für die Spannenergie
Ausblick
- Um eine Feder mit der Federkonstante \(D\) um eine Strecke der Länge \(s\) zu spannen benötigt man die Arbeit \(W= \frac{1}{2} \cdot D \cdot s^2\).
- Damit beträgt die Spannenergie \(E_{\rm{Spann}}\) einer Feder nach dem Spannen \(E_{\rm{Spann}}=\frac{1}{2} \cdot D \cdot s^2\).
Ausblick
- Um eine Feder mit der Federkonstante \(D\) um eine Strecke der Länge \(s\) zu spannen benötigt man die Arbeit \(W= \frac{1}{2} \cdot D \cdot s^2\).
- Damit beträgt die Spannenergie \(E_{\rm{Spann}}\) einer Feder nach dem Spannen \(E_{\rm{Spann}}=\frac{1}{2} \cdot D \cdot s^2\).
Kräfte beim Fadenpendel
Ausblick
- Die rücktreibende Kraft beim Fadenpendel kann auch über die Addition verschiedener Kräfte erklärt werden.
- Man kann die Kräfte sowohl aus einem ruhenden als auch aus einem mitbewegtem Bezugssystem betrachten.
- Dabei spielen neben der Gewichts- und der Fadenkraft auch noch die Zentripetal- bzw. die Zentrifugalkraft eine Rolle.
Ausblick
- Die rücktreibende Kraft beim Fadenpendel kann auch über die Addition verschiedener Kräfte erklärt werden.
- Man kann die Kräfte sowohl aus einem ruhenden als auch aus einem mitbewegtem Bezugssystem betrachten.
- Dabei spielen neben der Gewichts- und der Fadenkraft auch noch die Zentripetal- bzw. die Zentrifugalkraft eine Rolle.
Ausblick
I-U-Kennlinien
Ausblick
- Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
- Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
- Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).
Ausblick
- Kennlinien von Leitern können auch als \(I\)-\(U\)-Kennlinie dargestellt werden.
- Hier entspricht die Steigung des Graphen gerade dem Widerstand \(R\).
- Bei einem OHMschen Widerstand ist der Proportionalitätsfaktor des \(I\)-\(U\)-Diagramms gerade sein Widerstand \(R\).
Ausblick
Ausblick