Direkt zum Inhalt
Suchergebnisse 241 - 270 von 1237

Zusammenhang zwischen Transversal- und Longitudinalwellen

Ausblick
Ausblick

Schwingungsdämpfung durch Wirbelströme

Ausblick
Ausblick

Flüssigkeitspendel

Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel
Ausblick

Ein Flüssigkeitspendel mit einer Flüssigkeitssäule der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig von der Dichte der Flüssigkeit.

Zum Artikel Zu den Aufgaben

Kettenpendel

Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel
Ausblick

Ein Kettenpendel mit einer Kette der Länge \(L\) schwingt harmonisch mit der Zeit-Ort-Funktion \(y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{2 \cdot g}}{L}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{L}{{2 \cdot g}}} \) ist insbesondere unabhängig vom Material der Kette.

Zum Artikel Zu den Aufgaben

Skater in der Halfpipe

Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel
Ausblick

Ein Skater in einer Halfpipe mit dem Radius \(r\) schwingt bei kleinen Auslenkungen harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {\sqrt {\frac{{g}}{r}}  \cdot t} \right)\).

Die Schwingungsdauer \(T = 2\pi  \cdot \sqrt {\frac{r}{{g}}} \) ist insbesondere unabhängig von der Masse des Skaters.

Zum Artikel Zu den Aufgaben

Blattfederpendel stehend

Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer stehenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} - \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} - \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Schwingende Boje

Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel
Ausblick

Eine schwingende Boje mit der Dichte \(\rho_{\rm{B}}\) und der Länge \(L\) schwingt im Wasser (Dichte \(\rho_{\rm{W}}\)) harmonisch mit der Zeit-Ort-Funktion\[y(t) = {y_0} \cdot \cos \left( {\sqrt {\frac{{{\rho _{\rm{W}}} \cdot g}}{{{\rho _{\rm{B}}} \cdot L}}}  \cdot t} \right)\]

Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{\rho _{\rm{B}} \cdot L}{\rho _{\rm{W}} \cdot g}}\).

Zum Artikel Zu den Aufgaben

Blattfederpendel hängend

Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel
Ausblick

Ein Körper der Masse \(m\), der an einer hängenden Blattfeder der Länge \(l\) mit der Federkonstante \(D\) mit kleiner Auslenkung pendelt, schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat x \cdot \cos \left( {\omega \cdot t} \right)\) mit \(\omega = \sqrt {\frac{D}{m} + \frac{g}{l}}\).

Die Schwingungsdauer berechnet sich durch \(T = \frac{{2 \cdot \pi }}{{\sqrt { \frac{D}{m} + \frac{g}{l} } }}\).

Zum Artikel Zu den Aufgaben

Doppeltes Federpendel

Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel
Ausblick

  • Ein doppeltes Federpendel mit einem Pendelkörper der Masse \(m\) und zwei Federn mit der gleichen Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = {x_0} \cdot \cos \left( {{\omega _0} \cdot t} \right)\; {\rm{mit}}\;{\omega _0} = \sqrt {\frac{2 \cdot D}{m}} \)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{2 \cdot D}}\).

Zum Artikel Zu den Aufgaben

Raketenphysik mit der Tabellenkalkulation

Ausblick
Ausblick

Effektives Potential

Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel
Ausblick

  • Unter rein energetischen Gesichtspunkten könnten sich Trabanten dem Zentralkörper beliebig nähern oder sich beliebig weit von ihm entfernen.
  • Die Drehbewegung eines Trabanten, genauer die Erhaltung des Drehimpulses des Trabanten, sorgt aber dafür, dass sich der Abstand zwischen Zentralkörper und Trabant nur in gewissen Grenzen bewegen kann.
  • Man kann diese Einschränkung elegant durch das sogenannte effektive Potential ausdrücken.

Zum Artikel Zu den Aufgaben

Funktionsprinzip von Leuchtstofflampen

Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel
Ausblick

  • In Leuchtstofflampen sorgt keine Glühwendel für Licht sondern Quecksilberatome werden zum Leuchten angeregt.
  • Quecksilber emittiert zum großen Teil UV-Licht, dass durch einen speziellen Leuchtstoff in sichtbares Licht umgewandelt wird.
  • Leuchtstofflampen können auch durch starke externe Felder zum Leuchten angeregt werden.

Zum Artikel Zu den Aufgaben

Gravitationsfeldstärke und Ortsfaktor

Ausblick
Ausblick

VENTURI-Rohr

Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines VENTURI-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

PRANDTL-Rohr

Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel
Ausblick

  • Mit Hilfe eines PRANDTL-Rohrs kann man die Strömungsgeschwindigkeit von Fluiden messen.

Zum Artikel Zu den Aufgaben

Hemmungspendel (Galilei-Pendel)

Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel
Ausblick

  • Das gehemmte Pendel schwingt auf beiden Seiten gleich hoch (Energieerhaltung).
  • Bei mittig platziertem Hindernis gilt für die Periodendauer des gehemmten Pendels \(T=\frac{T_1}{2}+\frac{T_2}{2}\)
  • Wenn das Pendel höher als das Hindernis ausgelenkt wird, kommt keine Schwingung mehr zu stande.

Zum Artikel Zu den Aufgaben

Elektromagnetischer Schwingkreis ungedämpft (Theorie)

Ausblick
Ausblick

Zyklotron (Simulation MintApps)

Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download
Download ( Simulation )

Wir danken Herrn Thomas Kippenberg für die Erlaubnis, diese Simulation auf LEIFIphysik zu nutzen. Der Code steht unter GNU GPLv3 /…

Zum Download

Größen zur Beschreibung einer Kreisbewegung (Animation)

Download ( Simulation )

Die Animation zeigt die relevanten Größen zur Beschreibung einer Kreisbewegung.

Zum Download
Download ( Simulation )

Die Animation zeigt die relevanten Größen zur Beschreibung einer Kreisbewegung.

Zum Download

Bahngeschwindigkeit und Winkelgeschwindigkeit - gleiche Bahngeschwindigkeit (Animation)

Download ( Simulation )

Die Animation zeigt zwei Körper mit unterschiedlichen Bahnradien und gleicher Bahngeschwindigkeit.

Zum Download
Download ( Simulation )

Die Animation zeigt zwei Körper mit unterschiedlichen Bahnradien und gleicher Bahngeschwindigkeit.

Zum Download

Bahngeschwindigkeit und Winkelgeschwindigkeit - gleiche Winkelgeschwindigkeit (Animation)

Download ( Simulation )

Die Animation zeigt zwei Körper mit unterschiedlichen Bahnradien und gleicher Winkelgeschwindigkeit.

Zum Download
Download ( Simulation )

Die Animation zeigt zwei Körper mit unterschiedlichen Bahnradien und gleicher Winkelgeschwindigkeit.

Zum Download

Bahngeschwindigkeit und Winkelgeschwindigkeit - Vergleich (Animation)

Download ( Simulation )

Die Animation zeigt den Unterschied zwischen Bahngeschwindigkeit und Winkelgeschwindigkeit. Während die Winkelgeschwindigkeit \(\omega\) nur von der…

Zum Download
Download ( Simulation )

Die Animation zeigt den Unterschied zwischen Bahngeschwindigkeit und Winkelgeschwindigkeit. Während die Winkelgeschwindigkeit \(\omega\) nur von der…

Zum Download

Charakterisierung der gleichförmigen Kreisbewegung - gleichfömige Kreisbewegung (Animation)

Download ( Simulation )

Die Animation zeigt eine gleichförmige Kreisbewegung.

Zum Download
Download ( Simulation )

Die Animation zeigt eine gleichförmige Kreisbewegung.

Zum Download

Charakterisierung der gleichförmigen Kreisbewegung - Ellipsenbewegung (Animation)

Download ( Simulation )

Die Animation zeigt eine Ellipsenbewegung.

Zum Download
Download ( Simulation )

Die Animation zeigt eine Ellipsenbewegung.

Zum Download

Charakterisierung der gleichförmigen Kreisbewegung - ungleichförmige Kreisbewegung (Animation)

Download ( Simulation )

Die Animation zeigt eine ungleichförmige Kreisbewegung.

Zum Download
Download ( Simulation )

Die Animation zeigt eine ungleichförmige Kreisbewegung.

Zum Download

Zentripetalkraft - Einführung (Animation)

Download ( Simulation )

Die Animation verdeutlicht die Notwendigkeit einer zum Drehzentrum gerichteten Kraft für eine Kreisbewegung.

Zum Download
Download ( Simulation )

Die Animation verdeutlicht die Notwendigkeit einer zum Drehzentrum gerichteten Kraft für eine Kreisbewegung.

Zum Download