Direkt zum Inhalt
Suchergebnisse 181 - 210 von 1237

Pathfinder-Mission zum Mars

Ausblick
Ausblick

Bremsen in der Kurve

Ausblick
Ausblick

Motorrad in der Kurve

Ausblick
Ausblick

Einschalten eines Stromkreises mit einer Spule (Theorie)

Ausblick
Ausblick

Ausschalten eines Stromkreises mit einer Spule (Theorie)

Ausblick
Ausblick

Aufladen eines Kondensators (Theorie)

Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Aufladen durch eine elektrische Quelle mit der Nennspannung \(U_0\) über einen Widerstand der Größe \(R\) wird beschrieben durch die inhomogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = \frac{{\left| {{U_0}} \right|}}{R}\) mit \(Q(0{\rm{s}}) = 0\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot \left( {1 - {e^{ - \frac{1}{{R \cdot C}} \cdot t}}} \right)\). Die Ladung auf dem Kondensator steigt also während des Aufladevorgangs exponentiell an.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel
Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Aufladen durch eine elektrische Quelle mit der Nennspannung \(U_0\) über einen Widerstand der Größe \(R\) wird beschrieben durch die inhomogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = \frac{{\left| {{U_0}} \right|}}{R}\) mit \(Q(0{\rm{s}}) = 0\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot \left( {1 - {e^{ - \frac{1}{{R \cdot C}} \cdot t}}} \right)\). Die Ladung auf dem Kondensator steigt also während des Aufladevorgangs exponentiell an.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Entladen eines Kondensators (Theorie)

Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Entladen über einen Widerstand der Größe \(R\) wird beschrieben durch die homogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = 0\) mit \(Q(0{\rm{s}}) = C \cdot \left| {{U_0}} \right|\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot e^{ - \frac{1}{R \cdot C} \cdot t}\). Die Ladung auf dem Kondensator fällt also während des Entladevorgangs exponentiell ab.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel
Ausblick

  • Der zeitliche Verlauf der Ladung auf einem Kondensator der Kapazität \(C\) beim Entladen über einen Widerstand der Größe \(R\) wird beschrieben durch die homogene Differentialgleichung 1. Ordnung \(\dot Q(t) + \frac{1}{{R \cdot C}} \cdot Q(t) = 0\) mit \(Q(0{\rm{s}}) = C \cdot \left| {{U_0}} \right|\).
  • Diese Differentialgleichung wird gelöst durch die Funktion \(Q(t) = C \cdot \left| {{U_0}} \right| \cdot e^{ - \frac{1}{R \cdot C} \cdot t}\). Die Ladung auf dem Kondensator fällt also während des Entladevorgangs exponentiell ab.
  • Für die Halbwertszeit gilt \({t_{\rm{H}}} = R \cdot C \cdot \ln \left( 2 \right)\).

Zum Artikel Zu den Aufgaben

Botafumeiro (Simulation)

Ausblick
Ausblick

Bremsen beim Fahrrad

Ausblick
Ausblick

Schaltung beim Fahrrad

Ausblick
Ausblick

Energieumsatz beim Fahrradfahren

Ausblick
Ausblick

Energie und Leistung beim Fahrradfahren

Ausblick
Ausblick

Reibungskräfte beim Fahrradfahren

Ausblick
Ausblick

Anstiege und Abfahrten beim Fahrradfahren

Ausblick
Ausblick

Anfahren und Abbremsen beim Fahrradfahren

Ausblick
Ausblick

Elektrostatische Beschleuniger

Ausblick

  • Im Van-de-Graaf-Beschleuniger sorgt ein mechanisch angetriebenes isolierendes Endlosband für die Beschleunigungsspannung.
  • Im Tandembeschleuniger wird die Spannung eines Van-de-Graaf-Beschleunigers durch Umladung zweimal ausgenutzt.

Zum Artikel
Ausblick

  • Im Van-de-Graaf-Beschleuniger sorgt ein mechanisch angetriebenes isolierendes Endlosband für die Beschleunigungsspannung.
  • Im Tandembeschleuniger wird die Spannung eines Van-de-Graaf-Beschleunigers durch Umladung zweimal ausgenutzt.

Zum Artikel Zu den Aufgaben

Linearbeschleuniger

Ausblick

  • Die Teilchen bewegen sich geradlinig durch wechselnd geladene Driftröhren, in den Zwischenräumen werden sie beschleunigt.
  • Zum Laden der Driftröhren wird eine Wechselspannung mit fester Frequenz genutzt, daher müssen die Driftröhren immer länger werden.
  • Anwendung finden Linearbeschleuniger z.B. bei der Tumorbestrahlung

Zum Artikel
Ausblick

  • Die Teilchen bewegen sich geradlinig durch wechselnd geladene Driftröhren, in den Zwischenräumen werden sie beschleunigt.
  • Zum Laden der Driftröhren wird eine Wechselspannung mit fester Frequenz genutzt, daher müssen die Driftröhren immer länger werden.
  • Anwendung finden Linearbeschleuniger z.B. bei der Tumorbestrahlung

Zum Artikel Zu den Aufgaben

Zyklotron

Ausblick

  • Ein Zyklotron beschleunigt Teilchen platzsparend auf spiralähnlichen Bahnen
  • Die Teilchen bewegen sich dabei senkrecht zu einem homogenen Magnetfeld
  • Durch das E-Feld einer hochfrequenten Wechselspannung zwischen den beiden Duanten werden die Teilchen beschleunigt

Zum Artikel Zu den Aufgaben
Ausblick

  • Ein Zyklotron beschleunigt Teilchen platzsparend auf spiralähnlichen Bahnen
  • Die Teilchen bewegen sich dabei senkrecht zu einem homogenen Magnetfeld
  • Durch das E-Feld einer hochfrequenten Wechselspannung zwischen den beiden Duanten werden die Teilchen beschleunigt

Zum Artikel Zu den Aufgaben

Synchro-Zyklotron und Synchrotrone

Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben
Ausblick

  • Synchro-Zyklotrone und später Synchrotrone erhöhen die maximale Energie von Teilchenbeschleunigern im Vergleich zu einfachen Zyklotronen.
  • Beim Beschleunigen bzw. beim Ablenken muss das System mit der relativistischen Massenzunahme der Teilchen synchronisiert werden.
  • Man unterscheidet Ionen-Synchrotrone und Elektronen-Synchrotrone

Zum Artikel Zu den Aufgaben

TORRICELLI-Barometer

Ausblick
Ausblick

HUYGENS-Barometer

Ausblick
Ausblick

Eco-Celli-Barometer

Ausblick
Ausblick