Direkt zum Inhalt
Suchergebnisse 1 - 14 von 14

Welle - Teilchen - Dualismus

Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel
Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel Zu den Aufgaben

Statistische Deutung

Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel
Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel Zu den Aufgaben

De Broglie Wellenlänge

Grundwissen

  • Die de-Broglie-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-Broglie-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}} = {\lambda _{DB}} = \frac{h}{{m_{\rm{e}} \cdot v_{\rm{e}}}}\)
  • Im nicht-relativistischen Fall gilt entsprechend \({\lambda _{{\rm{DB}}}} = \frac{h}{{{p_{\rm{e}}}}} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }}\)

Zum Artikel
Grundwissen

  • Die de-Broglie-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-Broglie-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}} = {\lambda _{DB}} = \frac{h}{{m_{\rm{e}} \cdot v_{\rm{e}}}}\)
  • Im nicht-relativistischen Fall gilt entsprechend \({\lambda _{{\rm{DB}}}} = \frac{h}{{{p_{\rm{e}}}}} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }}\)

Zum Artikel Zu den Aufgaben

EINSTEINs Theorie des Lichts

Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \({E_{{\rm{Ph}}}} = h \cdot f\) und den Impuls \({p_{{\rm{Ph}}}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \({E_{{\rm{Ph}}}} = h \cdot f\) und den Impuls \({p_{{\rm{Ph}}}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben

Quantenobjekte

Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenzüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben
Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenzüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben

COMPTON-Effekt

Grundwissen

 

Joachim Herz Stiftung
  • Der Compton-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.

  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_c(1-\cos\left(\vartheta\right)).\]

  • Die Compton-Wellenlänge \(\lambda_c\) für Elektronen ist \[\lambda_{c,e} =\frac{h}{m_{e}\cdot c} \approx 2,43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung
  • Der Compton-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.

  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_c(1-\cos\left(\vartheta\right)).\]

  • Die Compton-Wellenlänge \(\lambda_c\) für Elektronen ist \[\lambda_{c,e} =\frac{h}{m_{e}\cdot c} \approx 2,43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben

Unschärferelation

Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunschärfe kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunschärfe kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben

Erklärungsprobleme des Photoeffekts

Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel
Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Quantenobjekten an Kristallgittern

Grundwissen
Grundwissen

Interferenz von Quantenobjekten hinter einem Doppelspalt

Grundwissen
Grundwissen

Wesenszug 1: Statistische Vorhersagbarkeit

Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel
Grundwissen

  • Die Bahn eines einzelnen Photons beim Doppelspaltexperiment kann grundsätzlich nicht genau vorhergesagt werden.
  • Quantenphysikalische Ereignisse sind nicht deterministisch, unterliegen aber statistischen Gesetzmäßigkeiten.
  • Ein einfaches Beispiel hierzu ist das Verhalten von Photonen an einem Strahlteiler.

Zum Artikel Zu den Aufgaben

Wesenszug 2: Fähigkeit zur Interferenz

Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel
Grundwissen

  • Quantenobjekte können mit sich selbst interferieren
  • Für die Ausbildung eines Interferenzmusters in einem Experiment müssen mehrere klassisch denkbare Wege existieren.
  • In der Quantenphysik wird keiner der klassischen Wege tatsächlich realisiert.
  • Quantenobjekten kann meist kein exakter Ort zugeschrieben werden, sondern statistische Aufenthaltswahrscheinlichkeiten.

Zum Artikel Zu den Aufgaben

Wesenszug 3: Eindeutige Messergebnisse

Grundwissen

  • Quantenmechnische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel
Grundwissen

  • Quantenmechnische Messungen haben aktiven Charakter: Messungen zwingen ein System einen der möglichen Messwerte anzunehmen.
  • Messergebnisse sind stets eindeutig, auch wenn das Quantenobjekt vor der Messung in einem Zustand war, der unbestimmt bezüglich der gemessenen Größe ist.
  • Man unterscheidet in der Quantenmechanik, ob ein Objekt eine Eigenschaft besitzt oder man diese Eigenschaft misst.

Zum Artikel Zu den Aufgaben

Wesenszug 4: Komplementarität

Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment keine Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel
Grundwissen

  • Bei einer Ortsmessung auf Höhe der Spalte bildet sich beim Doppelspaltexperiment keine Interferenzmuster auf dem Schirm aus.
  • Interferenzmuster und Unterscheidbarkeit der klassisch denkbaren Möglichkeiten schließen sich aus (Komplementarität).

Zum Artikel Zu den Aufgaben