Direkt zum Inhalt
Suchergebnisse 1 - 30 von 35

Der Transistor-Effekt

Grundwissen

  • Wenn beim npn-Transistor die Basis genügend postiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn beim npn-Transistor die Basis genügend postiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
  • Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.

Zum Artikel Zu den Aufgaben

Transistor-Formalitäten

Grundwissen

  • Einfache Transistoren bestehen drei abwechselnd p- und n-dotierten Halbleiterschichten.
  • Man unterscheidet zwischen npn-Transistor und pnp-Transistor - meistens behandelt man jedoch npn-Transistoren.
  • Die drei Teile nennt man Kollector (C), Basis (B) und Emitter (E).
  • Es gibt drei Schaltungsarten eines Transistors: Emitterschaltung, Kollektorschaltung und Basisschaltung. In der Praxis spielt die Emitterschaltung eine große Rolle.

Zum Artikel
Grundwissen

  • Einfache Transistoren bestehen drei abwechselnd p- und n-dotierten Halbleiterschichten.
  • Man unterscheidet zwischen npn-Transistor und pnp-Transistor - meistens behandelt man jedoch npn-Transistoren.
  • Die drei Teile nennt man Kollector (C), Basis (B) und Emitter (E).
  • Es gibt drei Schaltungsarten eines Transistors: Emitterschaltung, Kollektorschaltung und Basisschaltung. In der Praxis spielt die Emitterschaltung eine große Rolle.

Zum Artikel Zu den Aufgaben

Welle - Teilchen - Dualismus

Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel
Grundwissen

  • Einige Experimente können besser mit dem Wellenmodell, andere besser mit dem Teilchenmodell des Lichtes erklärt werden.
  • Beide Modelle orientieren sich an unseren makroskopischen Erfahrungen, die zur Beschreibung der Mikroskopischen kaum geeignet sind.
  • Die Quantenphysik bildet ein den beiden Modellen übergeordnetes (stark mathematikorientiertes) Modell.

Zum Artikel Zu den Aufgaben

Statistische Deutung

Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel
Grundwissen

  • Quantenobjekte im Sinne der Quantenphysik treten immer als "ganze Portionen" auf.
  • Die Bewegung von Quantenobjekten folgt Wahrscheinlichkeitsgesetzen.
  • Die Quantenmechanik macht statistische Aussagen über die relative Häufigkeit der Ergebnisse bei oftmaliger Wiederholung des gleichen Experiments.

Zum Artikel Zu den Aufgaben

de-BROGLIE-Wellenlänge

Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die de-BROGLIE-Wellenlänge ist eine Übertragung von Eigenschaften von Photonen auf Objekte mit Ruhemasse, z.B. Elektronen
  • Die de-BROGLIE-Wellenlänge für Elektronen berechnest du mittels \(\lambda _{\rm{DB}} = \frac{h}{p_{\rm{e}}}\)
  • Im nicht-relativistischen Fall gilt dann z.B. \({\lambda _{{\rm{DB}}}} = \frac{h}{m_{\rm{e}} \cdot v} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot {E_{{\rm{kin}}}}} }} = \frac{h}{{\sqrt {2 \cdot {m_{\rm{e}}} \cdot e \cdot {U_{{\rm{B}}}}} }}\)

Zum Artikel Zu den Aufgaben

EINSTEINs Theorie des Lichts

Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Licht ist ein Strom aus Energiepaketen, sogenannten Photonen.
  • Ein Photon besitzt die Energie \(E_{\rm{Ph}} = h \cdot f\) und den Impuls \(p_{\rm{Ph}} = \frac{h}{\lambda }\).
  • Der äußere Photoeffekt kann mit dem Photonenmodell gut erklärt werden.

Zum Artikel Zu den Aufgaben

Grundaussagen der speziellen Relativitätstheorie

Grundwissen

  • Das MICHELSON-MORLEY-Experiment brachte klassische Vorstellungen von absolutem Raum und absoluter Zeit ins Wanken.
  • In EINSTEINs Relativitätstheorie sind daher Zeit und Raum relativ. 

Zum Artikel
Grundwissen

  • Das MICHELSON-MORLEY-Experiment brachte klassische Vorstellungen von absolutem Raum und absoluter Zeit ins Wanken.
  • In EINSTEINs Relativitätstheorie sind daher Zeit und Raum relativ. 

Zum Artikel Zu den Aufgaben

Quantenobjekte

Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenzüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben
Grundwissen

Die Quantenphysik zeichnet sich durch vier zentrale Wesenzüge aus: Statistisches Verhalten, Fähigkeit zur Interferenz, Eindeutige Messergebnisse und Komplementarität

Zum Artikel Zu den Aufgaben

Formeln Dynamik

Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel
Grundwissen

  • Formelübersicht für massebehaftete und masselose Teilchen

Zum Artikel Zu den Aufgaben

Technik der Dotierung

Grundwissen

  • Halbleiter werden meist durch ein Diffusionsverfahren oder durch Implantation (Einschuss) mit Fremdatomen dotiert.

Zum Artikel
Grundwissen

  • Halbleiter werden meist durch ein Diffusionsverfahren oder durch Implantation (Einschuss) mit Fremdatomen dotiert.

Zum Artikel Zu den Aufgaben

COMPTON-Effekt

Grundwissen

 

Joachim Herz Stiftung
  • Der Compton-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.

  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_c(1-\cos\left(\vartheta\right)).\]

  • Die Compton-Wellenlänge \(\lambda_c\) für Elektronen ist \[\lambda_{c,e} =\frac{h}{m_{e}\cdot c} \approx 2,43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung
  • Der Compton-Effekt bezeichnet die Vergrößerung der Wellenlänge \(\lambda\) eines Photons bei der Streuung an einem Teilchen wie bspw. einem Elektron.

  • Die Zunahme der Wellenlänge \(\Delta\lambda\) bei einem Streuwinkel von \(\vartheta\) lässt sich berechnen mittels \[\Delta\lambda =\frac{h}{m_{0}\cdot c} (1-\cos\left(\vartheta\right))= \lambda_c(1-\cos\left(\vartheta\right)).\]

  • Die Compton-Wellenlänge \(\lambda_c\) für Elektronen ist \[\lambda_{c,e} =\frac{h}{m_{e}\cdot c} \approx 2,43\cdot 10^{-12}\,\rm{m}.\]

Zum Artikel Zu den Aufgaben

Eigenleitung im Siliziumkristall

Grundwissen

  • Bei tiefen Temperaturen sind Halbleiter Isolatoren.
  • Bei Energiezufuhr z.B. durch Erwärmung werden Elektronen aus ihren Paarbindungen gelöst - es entstehen Leitungselektronen und Löcher.
  • Legt man eine äußere Spannung an, kommt es zur sogn Eigenleitung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei tiefen Temperaturen sind Halbleiter Isolatoren.
  • Bei Energiezufuhr z.B. durch Erwärmung werden Elektronen aus ihren Paarbindungen gelöst - es entstehen Leitungselektronen und Löcher.
  • Legt man eine äußere Spannung an, kommt es zur sogn Eigenleitung.

Zum Artikel Zu den Aufgaben

Dotierte Halbleiter

Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen n-dotierten und p-dotierten Halbleitern (kurz n- bzw. p-Halbleiter).
  • Bei n-Halbleitern entstehen frei bewegliche Elektronen auf einem Untergrund positiver, ortsfester Atomrümpfe.
  • Bei p-Halbleitern entstehen frei bewegliche "Löcher" auf einem Untergrund negativer, ortsfester Atomrümpfe.

Zum Artikel Zu den Aufgaben

Unschärferelation

Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunschärfe kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man kann den Ort und den Impuls von Quantenobjekten gleichzeitig nicht beliebig genau bestimmen.
  • Das Produkt aus Orts- und Impulsunschärfe kann nicht beliebig klein werden. Es gilt \(\Delta x \cdot \Delta {p_x} \ge \frac{h}{{4\pi }}\)
  • Damit sind auch klassische Bahnvorstellungen von Teilchen nicht mehr möglich.

Zum Artikel Zu den Aufgaben

Energie-Impuls-Beziehung

Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
  • Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)

Zum Artikel Zu den Aufgaben

Relativistische Energie

Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruhenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
  • Die Ruhenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
  • Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)

Zum Artikel Zu den Aufgaben

Längenkontraktion

Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für bewegte Beobachter sind Strecken verkürzt.
  • Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
  • Die Längenkontraktion findet nur in Bewegungsrichtung statt.

Zum Artikel Zu den Aufgaben

EINSTEINs Postulate

Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel
Grundwissen

  • Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
  • Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.

Zum Artikel Zu den Aufgaben

Geschwindigkeitsbetrachtung

Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel
Grundwissen

  • Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
  • Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.

Zum Artikel Zu den Aufgaben

Inertialsystem

Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel
Grundwissen

  • Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
  • Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.

Zum Artikel Zu den Aufgaben

Effekte

Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel
Grundwissen

  • Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
  • Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
  • Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!

Zum Artikel Zu den Aufgaben

Zeitdilatation

Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
  • Vereinfacht: Bewegte Uhren gehen langsamer.
  • Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)

Zum Artikel Zu den Aufgaben

Gleichzeitigkeit

Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
  • Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
  • Auch Gleichzeitigkeit ist relativ.

Zum Artikel Zu den Aufgaben

Relativistische Masse und Impuls

Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
  • Die relativistische Masse  nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
  • Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v    \Rightarrow     p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)

Zum Artikel Zu den Aufgaben

Erklärungsprobleme des Photoeffekts

Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel
Grundwissen

Einige Aspekte des Photoeffektes können mit dem klassischen Wellenmodell nur schwerlich erklärt werden:

  • Die Existenz einer oberen Grenzwellenlänge oberhalb derer auch bei gesteigerter Intensität keine Elektronen mehr ausgelöst werden.
  • Trägheitsloses Einsetzen des Photostroms

Das Photonenmodell liefert für dieses Aspekte plausible Erklärungen.

Zum Artikel Zu den Aufgaben

Stromrichtige und Spannungsrichtige Messung

Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Messgeräte können die genaue Messung von Größen beeinflussen.
  • Je nachdem, ob die die Stromstärke \(I\) oder die Spannung \(U\) besonders genau messen möchtest, musst du deine Messgeräte schalten.

Zum Artikel Zu den Aufgaben

p-n-Übergang - Halbleiterdiode

Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung
  • Halbleiterdioden bestehen aus zwei Schichten: einem p-Halbleiter und einem n-Halbleiter
  • Dioden besitzen eine Durchlassrichtung und eine Sperrrichtung
  • Liegt der Pluspol an der p-Schicht, so ist die Diode in Durchlassrichtung geschaltet

Zum Artikel Zu den Aufgaben

Leuchtdioden (LED) - Einführung

Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Leuchtdioden sind Halbleiterdioden, die Licht , Infrarotstrahlung oder Ultraviolettstrahlung aussenden.
  • LEDs müssen in Durchlassrichtung geschaltet werden, damit sie leuchten.
  • LEDs sind effiziente Lichtquellen mit geringem Energiebedarf.

Zum Artikel Zu den Aufgaben

Beugung und Interferenz von Quantenobjekten an Kristallgittern

Grundwissen
Grundwissen

Interferenz von Quantenobjekten hinter einem Doppelspalt

Grundwissen
Grundwissen