Suchergebnis für:
Gefahr durch Strom und Körperwiderstand
Grundwissen
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
Grundwissen
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
Elektrizität und Ladung
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Auftreten von Induktion
Grundwissen
- Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
- Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
- Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
Grundwissen
- Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
- Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
- Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
Zusammenhang von Induktion und LORENTZ-Kraft
Grundwissen
- Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
- Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
- Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar
Grundwissen
- Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
- Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
- Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar
Induktionsstrom und Regel von Lenz
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Influenz und Polarisation
Grundwissen
- Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
- In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
- In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.
Grundwissen
- Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
- In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
- In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.
Elektrische Kraft
Grundwissen
- Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
- Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
- Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.
Grundwissen
- Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
- Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
- Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.
Elektrische Ladung und die Einheit Coulomb
Grundwissen
- Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
- Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
- Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
- Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).
Grundwissen
- Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
- Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
- Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
- Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).
Magnetische Flussdichte und die Maßeinheit Tesla
Grundwissen
- Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
- Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
- Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).
Grundwissen
- Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
- Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
- Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).
Innenwiderstand von Quellen
Grundwissen
- Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
- Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)
Grundwissen
- Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
- Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)
Spektren
Grundwissen
- Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
- Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
- Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
- Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.
Grundwissen
- Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
- Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
- Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
- Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.
Absolute Temperatur
Grundwissen
- Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
- Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
- Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
- Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.
Grundwissen
- Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
- Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
- Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
- Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.
Wärmestrahlung (Temperaturstrahlung)
Grundwissen
- Wärmestrahlung geht in der Regel von jedem Körper aus.
- Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
- Wärmestrahlung benötigt kein Medium um sich auszubreiten.
Grundwissen
- Wärmestrahlung geht in der Regel von jedem Körper aus.
- Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
- Wärmestrahlung benötigt kein Medium um sich auszubreiten.
Atommodell von BOHR
Grundwissen
- BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
- Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!
Grundwissen
- BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
- Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!
Potential und elektrische Spannung
Grundwissen
- Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der negative Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
- Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
- Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.
Grundwissen
- Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der negative Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
- Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
- Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.
Gesetz von MOSELEY
Grundwissen
- Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
- Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)
Grundwissen
- Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
- Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)
Bestimmung der AVOGADRO-Konstante durch RÖNTGEN-Spektroskopie
Grundwissen
- Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
- Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
- Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.
Grundwissen
- Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
- Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
- Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.
Magnetische Wirkung des elektrischen Stroms
Grundwissen
- Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
- Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
- Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.
Grundwissen
- Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
- Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
- Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.
Atomare Vorstellungen der Elektrizität
Grundwissen
- In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
- Positive Ladung wird oft rot, negative Ladung blau dargestellt.
- Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.
Grundwissen
- In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
- Positive Ladung wird oft rot, negative Ladung blau dargestellt.
- Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.
LENZsche Regel
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Magnetischer Fluss und Induktionsgesetz
Grundwissen
- Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
- In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
- Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).
Grundwissen
- Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
- In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
- Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).
Überblick über Wärmekraftmaschinen
Grundwissen
- Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
- Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
- Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.
Grundwissen
- Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
- Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
- Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.
Atomare Größen
Grundwissen
- Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
- Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
- \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
- Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).
Grundwissen
- Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
- Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
- \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
- Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).
Ladungseigenschaften
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- In Leitern können sich negative Ladungen relativ frei bewegen.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- In Leitern können sich negative Ladungen relativ frei bewegen.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Elementarladung
Grundwissen
- Die elektrische Ladung ist eine gequantelte Größe
- Die Elementarladung beträgt \(e=1{,}602\,176\,634\cdot 10^{-19}\,\rm{As}\)
- Die Ladung eines Elektrons beträgt \(-e\)
Grundwissen
- Die elektrische Ladung ist eine gequantelte Größe
- Die Elementarladung beträgt \(e=1{,}602\,176\,634\cdot 10^{-19}\,\rm{As}\)
- Die Ladung eines Elektrons beträgt \(-e\)
Allgemeines Gasgesetz
Grundwissen
- Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
- Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)
Grundwissen
- Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
- Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)
Bremsstrahlung
Grundwissen
- In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
- Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
- Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.
Grundwissen
- In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
- Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
- Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.
Änderung der inneren Energie
Grundwissen
- Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
- Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
- Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).
Grundwissen
- Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
- Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
- Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).
Wärmetransport
Grundwissen
- Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
- Im Alltag treten oft mehrere Arten gemeinsam auf
- Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport
Grundwissen
- Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
- Im Alltag treten oft mehrere Arten gemeinsam auf
- Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport
Elektrizitätslehre - Formeln
Grundwissen
- Hier findest du eine Zusammenstellung der wichtigsten Formeln aus der E-Lehre
Grundwissen
- Hier findest du eine Zusammenstellung der wichtigsten Formeln aus der E-Lehre