Direkt zum Inhalt
Suchergebnisse 61 - 90 von 193

Reflexionsgesetz

Grundwissen

Das Reflexionsgesetz besagt:

  • Der einfallende Strahl, das Einfallslot und der reflektierte Strahl liegen in einer Ebene.
  • Der Einfallswinkel und der Ausfallswinkel sind gleich groß. Es gilt \(\alpha = \alpha '\).
  • Weiter ist der Lichtweg umkehrbar. Das heißt fällt das Licht aus der Richtung des reflektierten Strahls ein, so wird es in die Richtung des einfallenden Strahls reflektiert.

Zum Artikel Zu den Aufgaben
Grundwissen

Das Reflexionsgesetz besagt:

  • Der einfallende Strahl, das Einfallslot und der reflektierte Strahl liegen in einer Ebene.
  • Der Einfallswinkel und der Ausfallswinkel sind gleich groß. Es gilt \(\alpha = \alpha '\).
  • Weiter ist der Lichtweg umkehrbar. Das heißt fällt das Licht aus der Richtung des reflektierten Strahls ein, so wird es in die Richtung des einfallenden Strahls reflektiert.

Zum Artikel Zu den Aufgaben

Lichtbrechung - Einführung

Grundwissen

  • Ein Lichtstrahl ändert an der Grenzfläche zweier Medien unterschiedlicher optischer Dichte seine Ausbreitungsrichtung. Der Strahl wird gebrochen.
  • Beim Übergang vom optisch dünneren zum optisch dichteren Medium wird der Strahl zum Lot hin gebrochen \({\left(\alpha_{1}> \alpha_{2}\right)}\).
  • Beim Übergang vom optisch dichteren zum optisch dünneren Medium wird der Strahl vom Lot weg gebrochen \({\left(\alpha_{1}< \alpha_{2}\right)}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Lichtstrahl ändert an der Grenzfläche zweier Medien unterschiedlicher optischer Dichte seine Ausbreitungsrichtung. Der Strahl wird gebrochen.
  • Beim Übergang vom optisch dünneren zum optisch dichteren Medium wird der Strahl zum Lot hin gebrochen \({\left(\alpha_{1}> \alpha_{2}\right)}\).
  • Beim Übergang vom optisch dichteren zum optisch dünneren Medium wird der Strahl vom Lot weg gebrochen \({\left(\alpha_{1}< \alpha_{2}\right)}\).

Zum Artikel Zu den Aufgaben

Linsenformen

Grundwissen

Joachim Herz Stiftung
Abb. 1 Strahlengang bei Konvex- und Konkavlinsen
  • Konvexlinsen, auch Sammellinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Brennpunkt kreuzen.
  • Konkavlinsen, auch Zerstreuungslinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Raum zerstreuen.
  • Die Sammel- bzw. Zerstreuungswirkung von Linsen kann mithilfe der Brechungseigenschaften von Prismen erklärt werden.

Zum Artikel
Grundwissen

Joachim Herz Stiftung
Abb. 1 Strahlengang bei Konvex- und Konkavlinsen
  • Konvexlinsen, auch Sammellinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Brennpunkt kreuzen.
  • Konkavlinsen, auch Zerstreuungslinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Raum zerstreuen.
  • Die Sammel- bzw. Zerstreuungswirkung von Linsen kann mithilfe der Brechungseigenschaften von Prismen erklärt werden.

Zum Artikel Zu den Aufgaben

Begriffe bei der Linsenabbildung

Grundwissen

  • Bei Konvexlinsen ist der Brennpunkt \(\rm{F_1}\) der Punkt, in dem sich parallel zur optischen Achse verlaufende Lichtstrahlen nach der Brechung durch die Linse auf der optischen Achse schneiden.
  • Bei Konkavlinsen ist der Brennpunkt \(\rm{F_1}\) der Schnittpunkt der nach rückwärts verlängerten, gebrochenen Strahlen.
  • Die Brennweite \(f\) ist der Abstand des Brennpunktes zu Linsenebene.
  • Gegenstandsweite \(g\) und Gegenstandsgröße \(G\) beziehen sich auf den abzubildenden Gegenstand, Bildweite \(b\) und Bildgröße \(B\) beziehen sich auf das Bild des Gegenstandes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Konvexlinsen ist der Brennpunkt \(\rm{F_1}\) der Punkt, in dem sich parallel zur optischen Achse verlaufende Lichtstrahlen nach der Brechung durch die Linse auf der optischen Achse schneiden.
  • Bei Konkavlinsen ist der Brennpunkt \(\rm{F_1}\) der Schnittpunkt der nach rückwärts verlängerten, gebrochenen Strahlen.
  • Die Brennweite \(f\) ist der Abstand des Brennpunktes zu Linsenebene.
  • Gegenstandsweite \(g\) und Gegenstandsgröße \(G\) beziehen sich auf den abzubildenden Gegenstand, Bildweite \(b\) und Bildgröße \(B\) beziehen sich auf das Bild des Gegenstandes.

Zum Artikel Zu den Aufgaben

Radiowellen

Grundwissen

  • Größenordnung der Wellenlänge:  größer als \(1\,{\rm m}\)
  • Größenordnung der Frequenz: kleiner als \(300\,{\rm MHz}\)
  • Anwendungen: Mobilfunk, TV, Radio

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge:  größer als \(1\,{\rm m}\)
  • Größenordnung der Frequenz: kleiner als \(300\,{\rm MHz}\)
  • Anwendungen: Mobilfunk, TV, Radio

Zum Artikel Zu den Aufgaben

Licht als Welle

Grundwissen

  • Im Wellenmodell wird Licht als Welle angesehen - ähnlich wie Wasser- oder Schallwellen.
  • Jeder Ort einer Wellenfront ist dabei Ausgangspunkt einer neuen Elementarwelle mit gleicher Geschwindigkeit und Frequenz.
  • Beugung und Interferenz am Doppelspalt können im Wellenmodell erklärt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Wellenmodell wird Licht als Welle angesehen - ähnlich wie Wasser- oder Schallwellen.
  • Jeder Ort einer Wellenfront ist dabei Ausgangspunkt einer neuen Elementarwelle mit gleicher Geschwindigkeit und Frequenz.
  • Beugung und Interferenz am Doppelspalt können im Wellenmodell erklärt werden.

Zum Artikel Zu den Aufgaben

Zwei-Quellen-Interferenz

Grundwissen

  • Gibt es nur zwei Quellen bzw. Sender, so spricht man von Zwei-Quellen-Interferenz.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.
  • Aus dem Beugungsbild von Licht am Doppelspalt, kann man die Wellenlänge des Lichtes bestimmen.

Zum Artikel
Grundwissen

  • Gibt es nur zwei Quellen bzw. Sender, so spricht man von Zwei-Quellen-Interferenz.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.
  • Aus dem Beugungsbild von Licht am Doppelspalt, kann man die Wellenlänge des Lichtes bestimmen.

Zum Artikel Zu den Aufgaben

Vielfachspalt und Gitter

Grundwissen

  • Durch Verwendung mehrerer Spalte werden die Interferenzmaxima intensiver und schärfer.
  • Aus dem Abstand zwischen den Hauptmaxima kann bei bekanntem Spaltabstand sehr präzise die Wellenlänge des Lichtes berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Verwendung mehrerer Spalte werden die Interferenzmaxima intensiver und schärfer.
  • Aus dem Abstand zwischen den Hauptmaxima kann bei bekanntem Spaltabstand sehr präzise die Wellenlänge des Lichtes berechnet werden.

Zum Artikel Zu den Aufgaben

Vom Stromkreis zum Schaltplan

Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auf Fotos sind nicht alle Elemente einer elektrischen Schaltung gut und klar zu erkennen.
  • Ein Schaltplan ist eine vereinfachte Darstellung einer elektrischen Schaltung.
  • Die verschiedenen Schaltsymbole für die Bauteile sind in einer Norm festgelegt.
  • Schaltpläne können auch am Computer erstellt werden

Zum Artikel Zu den Aufgaben

Stromkreismodelle

Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Hilfe verschiedener Modelle kannst du dir die Abläufe im Stromkreis vorstellen und erklären.
  • Du kannst dir einen Stromkreis wie einen offenen Wasserkreislauf vorstellen.
  • Du kannst dir einen Stromkreis wie eine Fahrradkette, die ein Rad antreibt, vorstellen.
  • Du kannst dir einen Stromkreis mit Hilfe von Luftdruck und Elektronengasdruck vorstellen.

Zum Artikel Zu den Aufgaben

Einzelspalt

Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel
Grundwissen

  • Auch am Einzelspalt treten Interferenzerscheinungen auf.
  • Die Lage der Maxima und Minima wird von der Spaltbreite \(B\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Die Bedingungen für konstruktive und destruktive Interferenz unterscheiden sich von denen beim Doppelspalt bzw. Gitter.

Zum Artikel Zu den Aufgaben

Eigenschaften von Permanentmagneten

Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Permanentmagnete besitzen zwei unterschiedliche Pole: einen Nordpol und einen Südpol.
  • Gleichartige Pole stoßen sich ab, ungleichartige Pole ziehen sich an.
  • Zerbrichst du einen Stabmagnet, so entstehen zwei Magnete, von denen wieder jeder Magnet einen Nordpol und einen Südpol hat.

Zum Artikel Zu den Aufgaben

Magnetische Influenz

Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn du einen Magneten Nahe an einen zuvor nicht magnetischen Eisenstab bringst, wird dieser zu einem Magneten - diesen Vorgang nennt  man magnetische Influenz.
  • Die im Eisen enthaltenen Elementarmagnete richten sich dabei aus.
  • Magnetische Influenz tritt bei ferromagnetischen Stoffen wie Eisen, Kobalt, Nickel auf.

Zum Artikel Zu den Aufgaben

Elektrische Größen

Grundwissen

  • Jeder physikalischen Größe wird ein Formelzeichen (Symbol) zugeordnet.
  • Die Angabe einer physikalischen Größe erfolgt mit Maßzahl und Maßeinheit.
  • Der elektrische Strom hat das Symbol \(I\), die Spannung das Symbol \(U\) und der Widerstand das Symbol \(R\). 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Jeder physikalischen Größe wird ein Formelzeichen (Symbol) zugeordnet.
  • Die Angabe einer physikalischen Größe erfolgt mit Maßzahl und Maßeinheit.
  • Der elektrische Strom hat das Symbol \(I\), die Spannung das Symbol \(U\) und der Widerstand das Symbol \(R\). 

Zum Artikel Zu den Aufgaben

Von Ladung zum elektrischen Strom

Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Werden fortlaufend elektrische Ladungen transportiert, so fließt ein elektrischer Strom.
  • Je mehr Ladungen pro Zeiteinheit durch eine gedachte Testfläche in einem Leiter fließen, desto größer ist die Stromstärke \(I\) im Leiter.
  • Es gilt \({\text{Stromstärke}}=\frac{{{\text{Ladung durch Testfläche}}}}{{{\rm{Messzeit}}}}\), also \(I=\frac{\Delta Q}{\Delta t}\)

Zum Artikel Zu den Aufgaben

Elektrische Spannung

Grundwissen

  • Als Spannung bezeichnet man die Fähigkeit einer elektrischen Quelle, in einem Stromkreis einen Strom aufrechtzuerhalten.
  • Im Modell des offenen Wasserkreislaufs entspricht die Spannung dem Höhenunterschied der Vorratsbehälter.
  • Die elektrische Spannung hat das Formelzeichen \(U\) und wird in der Einheit \([U]=1\,\rm{V}\) (Volt) angegeben.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Spannung bezeichnet man die Fähigkeit einer elektrischen Quelle, in einem Stromkreis einen Strom aufrechtzuerhalten.
  • Im Modell des offenen Wasserkreislaufs entspricht die Spannung dem Höhenunterschied der Vorratsbehälter.
  • Die elektrische Spannung hat das Formelzeichen \(U\) und wird in der Einheit \([U]=1\,\rm{V}\) (Volt) angegeben.

Zum Artikel Zu den Aufgaben

Elektrische Spannung und Energie

Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel
Grundwissen

  • Elektrische Spannung kann gut in Analogie mit dem offenen Wasserkreislauf verstanden werden.
  • Die Spannung einer elektrischen Quelle ist der Quotient aus der potentiellen Energie einer Ladung und dem Ladungsbetrag: \(U = \frac{{{E_{pot}}}}{Q}\)

Zum Artikel Zu den Aufgaben

Berechnung von Schaltungen

Grundwissen

  • Bei Berechnungen an komplexeren Schaltkreisen schrittweise arbeiten.
  • Zunächst jeweils Ersatzwiderstände von parallelen Ästen berechnen, sodass eine Reihenschaltung entsteht.
  • Anschließend den Gesamtwiderstand der Schaltung berechnen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Berechnungen an komplexeren Schaltkreisen schrittweise arbeiten.
  • Zunächst jeweils Ersatzwiderstände von parallelen Ästen berechnen, sodass eine Reihenschaltung entsteht.
  • Anschließend den Gesamtwiderstand der Schaltung berechnen.

Zum Artikel Zu den Aufgaben

KIRCHHOFFsche Gesetze

Grundwissen

  • Knotenregel: In jedem Verzweigungspunkt sind hin- und abfließende Ströme gleich, es gilt \(I_{\rm{hin}}=I_{\rm{ab}}\).
  • Maschenregel: Die Summe aller Teilspannungen ist gleich der Spannung der Quelle, es gilt \(U = U_1+U_2+...+U_n\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Knotenregel: In jedem Verzweigungspunkt sind hin- und abfließende Ströme gleich, es gilt \(I_{\rm{hin}}=I_{\rm{ab}}\).
  • Maschenregel: Die Summe aller Teilspannungen ist gleich der Spannung der Quelle, es gilt \(U = U_1+U_2+...+U_n\).

Zum Artikel Zu den Aufgaben

Reihenschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben

Elektrische Arbeit und Leistung

Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben

Elektrisches Feld

Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben

Energie des magnetischen Feldes

Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben

LORENTZ-Kraft

Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Feld (schräger Eintritt)

Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben

Selbstinduktion und Induktivität

Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben
Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben

Transformator

Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben

Energieübertragung durch Hochspannung

Grundwissen

Zum Transport von elektrischer Energie über große Entfernungen werden Hochspannungsleitung genutzt. 

Durch den Nutzen hoher Spannungen kann der in den Leitung fließende Strom klein gehalten werden.

Hohe Spannungen reduzieren die Verlustleistung auf dem Transportweg.

Zum Artikel Zu den Aufgaben
Grundwissen

Zum Transport von elektrischer Energie über große Entfernungen werden Hochspannungsleitung genutzt. 

Durch den Nutzen hoher Spannungen kann der in den Leitung fließende Strom klein gehalten werden.

Hohe Spannungen reduzieren die Verlustleistung auf dem Transportweg.

Zum Artikel Zu den Aufgaben

Glühelektrischer oder EDISON-Effekt

Grundwissen

  • Aus einer beheizten Glühwendel können Elektronen aus dem Metall austreten
  • Je größer die Heizspannung ist, desto mehr und desto schnellere Elektronen treten aus dem Metall aus

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus einer beheizten Glühwendel können Elektronen aus dem Metall austreten
  • Je größer die Heizspannung ist, desto mehr und desto schnellere Elektronen treten aus dem Metall aus

Zum Artikel Zu den Aufgaben

Überlagerung elektrischer Felder

Grundwissen

  • Das E-Feld einer Ladungsanordnung ergibt sich aus der Überlagerung der Felder der Einzelladungen.
  • In jedem Raumpunkt werden die Feldstärkevektoren der Einzelfelder vektoriell addiert.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das E-Feld einer Ladungsanordnung ergibt sich aus der Überlagerung der Felder der Einzelladungen.
  • In jedem Raumpunkt werden die Feldstärkevektoren der Einzelfelder vektoriell addiert.

Zum Artikel Zu den Aufgaben