Suchergebnis für:
Gefahr durch Strom und Körperwiderstand
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
Elektrizität und Ladung
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Auftreten von Induktion
- Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
- Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
- Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
- Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
- Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
- Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
Zusammenhang von Induktion und LORENTZ-Kraft
- Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
- Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
- Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar
- Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
- Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
- Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar
Induktionsstrom und Regel von Lenz
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Influenz und Polarisation
- Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
- In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
- In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.
- Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
- In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
- In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.
Elektrische Kraft
- Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
- Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
- Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.
- Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
- Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
- Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.
Elektrische Ladung und die Einheit Coulomb
- Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
- Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
- Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
- Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).
- Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
- Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
- Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
- Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).
Magnetische Flussdichte und die Maßeinheit Tesla
- Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
- Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
- Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).
- Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
- Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
- Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).
Innenwiderstand von Quellen
- Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
- Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)
- Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
- Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)
Optische Geräte
- Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
- Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
- Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.
- Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
- Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
- Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.
Ultraviolett
- Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
- Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
- Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen
- Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
- Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
- Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen
Röntgenstrahlung
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
- Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
- Anwendungen: Röntgengeräte, Computertomographen
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
- Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
- Anwendungen: Röntgengeräte, Computertomographen
Gammastrahlung
- Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
- Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
- Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen
- Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
- Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
- Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen
Absolute Temperatur
- Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
- Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
- Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
- Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.
- Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
- Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
- Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
- Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.
Wärmestrahlung (Temperaturstrahlung)
- Wärmestrahlung geht in der Regel von jedem Körper aus.
- Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
- Wärmestrahlung benötigt kein Medium um sich auszubreiten.
- Wärmestrahlung geht in der Regel von jedem Körper aus.
- Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
- Wärmestrahlung benötigt kein Medium um sich auszubreiten.
Elektromagnetisches Spektrum
- Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
- Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.
- Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
- Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.
Sichtbares Licht
- Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
- Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)
- Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
- Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)
Infrarot
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
- Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
- Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
- Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
- Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung
Mikrowellen
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
- Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
- Anwendungen: Fund, Mikrowellenherd, Radar
- Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
- Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
- Anwendungen: Fund, Mikrowellenherd, Radar
Strahlensatz
Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]
Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]
Gangunterschied bei zwei Quellen
- Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
- Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.
- Zur Berechnung des Gangunterschiedes muss unterschieden werden, ob Sender und Empfänger nahe oder weit entfernt voneinander sind im Vergleich zu ihrem Abstand.
- Bei Reflexion am optisch dichteren Medium muss zusätzlich der Phasensprung berücksichtigt werden.
Potential und elektrische Spannung
- Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der negative Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
- Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
- Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.
- Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der negative Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
- Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
- Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.
HERTZsche Versuche
- Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
- Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
- Bei Licht handelt es sich um eine elektromagnetische Welle.
- Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
- Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
- Bei Licht handelt es sich um eine elektromagnetische Welle.
Magnetische Wirkung des elektrischen Stroms
- Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
- Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
- Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.
- Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
- Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
- Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.
Atomare Vorstellungen der Elektrizität
- In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
- Positive Ladung wird oft rot, negative Ladung blau dargestellt.
- Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.
- In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
- Positive Ladung wird oft rot, negative Ladung blau dargestellt.
- Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.
LENZsche Regel
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Magnetischer Fluss und Induktionsgesetz
- Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
- In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
- Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).
- Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
- In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
- Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).
Licht als Teilchen - Vorstellungen von Newton
- In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
- Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
- Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.
- In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
- Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
- Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.
Überblick über Wärmekraftmaschinen
- Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
- Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
- Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.
- Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
- Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
- Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.