Direkt zum Inhalt
Suchergebnisse 121 - 150 von 197

Der Lotuseffekt - selbstreinigende Oberfläche

Grundwissen
Grundwissen

Auftrieb

Grundwissen
Grundwissen

Flugfrüchte

Grundwissen
Grundwissen

Leichtbauweise

Grundwissen
Grundwissen

Stehende elektromagnetische Welle (Simulation)

Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende elektromagnetische Wellen entstehen z.B. durch Überlagerung einer einlaufenden Welle mit der in der Metallplatte induzierten Welle.
  •  Der Abstand zweier benachbarter Knoten der stehenden Welle ist gleich der halben Wellenlänge der ursprünglichen, fortschreitenden Welle.

Zum Artikel Zu den Aufgaben

Lichtbündel und Lichtstrahlen

Grundwissen

  • Von Lichtquellen wie der Sonne oder einer Lampe gehen meist divergente (auseinanderlaufende) Lichtbündel aus.
  • Mithilfe von Blenden oder Spalten kannst du daraus (nahezu) parallele Lichtbündel erzeugen, die in unserer Vorstellung aus vielen einzelnen, sehr dünnen Lichtstrahlen bestehen.
  • Lichtstrahlen breiten sich in einem homogenen Medium, wie z.B. Luft, geradlinig aus.
  • Lichtstrahlen stören sich nicht gegenseitig in ihrer geradlinigen Ausbreitung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Von Lichtquellen wie der Sonne oder einer Lampe gehen meist divergente (auseinanderlaufende) Lichtbündel aus.
  • Mithilfe von Blenden oder Spalten kannst du daraus (nahezu) parallele Lichtbündel erzeugen, die in unserer Vorstellung aus vielen einzelnen, sehr dünnen Lichtstrahlen bestehen.
  • Lichtstrahlen breiten sich in einem homogenen Medium, wie z.B. Luft, geradlinig aus.
  • Lichtstrahlen stören sich nicht gegenseitig in ihrer geradlinigen Ausbreitung.

Zum Artikel Zu den Aufgaben

Additive Farbmischung

Grundwissen

  • Bei der additiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass zu vorhandenem Licht das Licht weiterer Spektralfarben hinzugefügt wird.
  • In der Praxis mischt man nur Licht der drei Spektralfarben "Rot", "Grün" und "Blau". Man spricht dann vom RGB-Farbraum und nennt die Spektralfarben "Rot", "Grün" und "Blau" die Grund- oder Primärfarben der additiven Farbmischung.
  • Mischt man das Licht dieser drei Grundfarben passend zusammen, so erhält man fast alle möglichen Farbeindrücke und auch den Farbeindruck "weiß".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der additiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass zu vorhandenem Licht das Licht weiterer Spektralfarben hinzugefügt wird.
  • In der Praxis mischt man nur Licht der drei Spektralfarben "Rot", "Grün" und "Blau". Man spricht dann vom RGB-Farbraum und nennt die Spektralfarben "Rot", "Grün" und "Blau" die Grund- oder Primärfarben der additiven Farbmischung.
  • Mischt man das Licht dieser drei Grundfarben passend zusammen, so erhält man fast alle möglichen Farbeindrücke und auch den Farbeindruck "weiß".

Zum Artikel Zu den Aufgaben

Subtraktive Farbmischung

Grundwissen

  • Bei der subtraktiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass aus vorhandenem Licht das Licht einzelner Spektralfarben herausgefiltert wird.
  • In der Praxis filtert man aus Licht, in dem alle Spektralfarben enthalten sind, getrennt voneinander Licht des "roten", des "grünen" und des "blauen" Spektralbereichs heraus. Die entsprechenden Farbfilter erscheinen uns in den Farben "Cyan", "Magenta" und "Gelb" ("Yellow"). Man spricht deshalb vom CMY-Farbraum.
  • Filtert man aus Sonnenlicht das Licht des "roten", des "grünen" und des "blauen" Spektralbereichs in unterschiedlichen Kombinationen und Filterstärken heraus, so erhält man fast alle möglichen Farbeindrücke bis hin zum Farbeindruck "schwarz".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der subtraktiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass aus vorhandenem Licht das Licht einzelner Spektralfarben herausgefiltert wird.
  • In der Praxis filtert man aus Licht, in dem alle Spektralfarben enthalten sind, getrennt voneinander Licht des "roten", des "grünen" und des "blauen" Spektralbereichs heraus. Die entsprechenden Farbfilter erscheinen uns in den Farben "Cyan", "Magenta" und "Gelb" ("Yellow"). Man spricht deshalb vom CMY-Farbraum.
  • Filtert man aus Sonnenlicht das Licht des "roten", des "grünen" und des "blauen" Spektralbereichs in unterschiedlichen Kombinationen und Filterstärken heraus, so erhält man fast alle möglichen Farbeindrücke bis hin zum Farbeindruck "schwarz".

Zum Artikel Zu den Aufgaben

Spektralfarben

Grundwissen

  • Weißes Licht lässt sich mithilfe eines Prismas in seine Spektralfarben zerlegen.
  • Als Spektralfarben werden meist die Regenbogenfarben Rot, Orange, Gelb, Grün, Blau, Indigo und Violett bezeichnet.
  • Spektralfarben lassen sich nicht weiter in andere Farben zerlegen. Es sind reine Farben.
  • Licht enthält oft auch nicht sichtbare Anteile - zum einen infrarotes Licht und zum anderen ultraviolettes Licht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Weißes Licht lässt sich mithilfe eines Prismas in seine Spektralfarben zerlegen.
  • Als Spektralfarben werden meist die Regenbogenfarben Rot, Orange, Gelb, Grün, Blau, Indigo und Violett bezeichnet.
  • Spektralfarben lassen sich nicht weiter in andere Farben zerlegen. Es sind reine Farben.
  • Licht enthält oft auch nicht sichtbare Anteile - zum einen infrarotes Licht und zum anderen ultraviolettes Licht.

Zum Artikel Zu den Aufgaben

Lochkamera

Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben

Lichtgeschwindigkeit

Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben

Bildentstehung bei Linsenabbildungen

Grundwissen

  • Von Konvexlinsen erzeugte reelle Bilder (Voraussetzung \(g>f\)) sind höhen- und seitenverkehrt.
  • Bilder entstehen dabei punktweise! Bilder wandern niemals als Ganzes.

Zum Artikel
Grundwissen

  • Von Konvexlinsen erzeugte reelle Bilder (Voraussetzung \(g>f\)) sind höhen- und seitenverkehrt.
  • Bilder entstehen dabei punktweise! Bilder wandern niemals als Ganzes.

Zum Artikel Zu den Aufgaben

Bildeigenschaften bei Abbildungen

Grundwissen

  • Wenn \(g>f\) ist, entstehen bei Abbildung an Sammellinsen reelle, höhen- und seitenverkehrte Bilder.
  • Ist \(g>2\cdot f\), so sind Bilder an Sammellinsen kleiner als der Gegenstand. Gilt \(2\cdot f>g>f\), so sind die Bilder größer als der Gegenstand.
  • Wenn \(g<f\) ist, entstehen bei Abbildung an Sammellinsen virtuelle Bilder, die nicht auf dem Kopf stehen und größer als der Gegenstand sind.
  • Bei Abbildung an Zerstreuungslinsen entstehen immer virtuelle Bilder, die kleiner als der Gegenstand sind und nicht auf dem Kopf stehen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn \(g>f\) ist, entstehen bei Abbildung an Sammellinsen reelle, höhen- und seitenverkehrte Bilder.
  • Ist \(g>2\cdot f\), so sind Bilder an Sammellinsen kleiner als der Gegenstand. Gilt \(2\cdot f>g>f\), so sind die Bilder größer als der Gegenstand.
  • Wenn \(g<f\) ist, entstehen bei Abbildung an Sammellinsen virtuelle Bilder, die nicht auf dem Kopf stehen und größer als der Gegenstand sind.
  • Bei Abbildung an Zerstreuungslinsen entstehen immer virtuelle Bilder, die kleiner als der Gegenstand sind und nicht auf dem Kopf stehen.

Zum Artikel Zu den Aufgaben

Interferenz am Keil

Grundwissen

  • Auch bei der Reflexion an keilförmigen Anordnungen tritt Interferenz auf.
  • Mit einem Luftkeil kannst du die Dicke dünner Objekte, wie z.B. von einem Haar bestimmen.

Zum Artikel
Grundwissen

  • Auch bei der Reflexion an keilförmigen Anordnungen tritt Interferenz auf.
  • Mit einem Luftkeil kannst du die Dicke dünner Objekte, wie z.B. von einem Haar bestimmen.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im elektrischen Längsfeld

Grundwissen

  • Geladene Teilchen, die in einem elektrischen Feld ruhen, werden in Richtung der Feldlinien beschleunigt oder abgebremst.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines elektrischen Feldes bewegen, werden in Bewegungsrichtung (d.h. in Richtung der Feldlinien) beschleunigt oder abgebremst. Ist das Feld homogen, so ist die Beschleunigung oder Abbremsung gleichmäßig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem elektrischen Feld ruhen, werden in Richtung der Feldlinien beschleunigt oder abgebremst.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines elektrischen Feldes bewegen, werden in Bewegungsrichtung (d.h. in Richtung der Feldlinien) beschleunigt oder abgebremst. Ist das Feld homogen, so ist die Beschleunigung oder Abbremsung gleichmäßig.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im elektrischen Querfeld

Grundwissen

  • Geladene Teilchen, die in einem elektrischen Feld ruhen, werden in Richtung der Feldlinien beschleunigt.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines elektrischen Feldes bewegen, werden in Richtung der Feldlinien beschleunigt. Ist das elektrische Feld homogen, so bewegen sich die Teilchen dabei auf einer Parabelbahn.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem elektrischen Feld ruhen, werden in Richtung der Feldlinien beschleunigt.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines elektrischen Feldes bewegen, werden in Richtung der Feldlinien beschleunigt. Ist das elektrische Feld homogen, so bewegen sich die Teilchen dabei auf einer Parabelbahn.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Längsfeld

Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladene Teilchen, die sich parallel zu den Feldlinien eines magnetischen Feldes bewegen, erfahren ebenfalls keine Kraft und bewegen sich geradlinig gleichförmig weiter.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Querfeld

Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines magnetischen Feldes bewegen, erfahren eine Kraft, die senkrecht zur Bewegungsrichtung und senkrecht zu den Feldlinien gerichtet ist und werden in Richtung dieser Kraft beschleunigt. Dabei ändert sich nur die Richtung, nicht aber der Betrag der Geschwindigkeit. Ist das magnetische Feld homogen, so bewegen sich die Teilchen dabei auf einer Kreisbahn.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Geladene Teilchen, die in einem magnetischen Feld ruhen, erfahren keine Kraft und bleiben in Ruhe.

  • Geladenen Teilchen, die sich senkrecht zu den Feldlinien eines magnetischen Feldes bewegen, erfahren eine Kraft, die senkrecht zur Bewegungsrichtung und senkrecht zu den Feldlinien gerichtet ist und werden in Richtung dieser Kraft beschleunigt. Dabei ändert sich nur die Richtung, nicht aber der Betrag der Geschwindigkeit. Ist das magnetische Feld homogen, so bewegen sich die Teilchen dabei auf einer Kreisbahn.

Zum Artikel Zu den Aufgaben

Speicherung von elektrischer Energie

Grundwissen
Grundwissen

Speicherung von mechanischer Energie

Grundwissen
Grundwissen

Speicherung von thermischer Energie

Grundwissen
Grundwissen

Speicherung von chemischer Energie

Grundwissen
Grundwissen

Wärmewirkung des elektrischen Stroms

Grundwissen

  • Die Wärmewirkung von elektrischem Strom wird in der Technik vielfältig genutzt.
  • Mit elektrischem Strom können hohe Temperaturen erzeugt werden.
  • Die Wärmewirkung wird auch als Sicherung genutzt, um Elektrogeräte zu schützen (Schmelzsicherung).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wärmewirkung von elektrischem Strom wird in der Technik vielfältig genutzt.
  • Mit elektrischem Strom können hohe Temperaturen erzeugt werden.
  • Die Wärmewirkung wird auch als Sicherung genutzt, um Elektrogeräte zu schützen (Schmelzsicherung).

Zum Artikel Zu den Aufgaben

Chemische Wirkung des elektrischen Stroms

Grundwissen

  • Mit Hilfe von elektrischem Strom können einige Stoffe zersetzt oder in andere Stoffe umgesetzt werden.
  • Die Elektrolyse von Wasser und das Galvanisieren sind zwei technische Anwendungen für die chemische Wirkung von Strom.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Hilfe von elektrischem Strom können einige Stoffe zersetzt oder in andere Stoffe umgesetzt werden.
  • Die Elektrolyse von Wasser und das Galvanisieren sind zwei technische Anwendungen für die chemische Wirkung von Strom.

Zum Artikel Zu den Aufgaben

Leuchtwirkung des elektrischen Stroms

Grundwissen

  • Die Leuchtwirkung von elektrischem Strom wird im Alltag an vielen Stellen deutlich.
  • Es gibt viele unterschiedliche Lampentypen: Glühlampen, Halogenlampen, Leuchtstoffröhren und LEDs
  • LEDs und Leuchtstoffröhren wandeln einen größeren Teil der Energie in Licht um als Glühlampen.

Zum Artikel
Grundwissen

  • Die Leuchtwirkung von elektrischem Strom wird im Alltag an vielen Stellen deutlich.
  • Es gibt viele unterschiedliche Lampentypen: Glühlampen, Halogenlampen, Leuchtstoffröhren und LEDs
  • LEDs und Leuchtstoffröhren wandeln einen größeren Teil der Energie in Licht um als Glühlampen.

Zum Artikel Zu den Aufgaben

Potentielle Energie im homogenen Feld

Grundwissen

  • Bewegt sich eine Ladung im homogenen E-Feld in Richtung oder entgegen der Richtung der Feldlinien, so ändert sich die potentielle Energie der Ladung.
  • Allgemein ist die Änderung der potentiellen Energie gleich der negativen Feldarbeit, also \(\Delta {E_{\rm{pot}}} = - {W_{\rm{Feld}}}\).
  • Die Nulllage der potentiellen Energie wird meist auf die negative Platte gelegt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich eine Ladung im homogenen E-Feld in Richtung oder entgegen der Richtung der Feldlinien, so ändert sich die potentielle Energie der Ladung.
  • Allgemein ist die Änderung der potentiellen Energie gleich der negativen Feldarbeit, also \(\Delta {E_{\rm{pot}}} = - {W_{\rm{Feld}}}\).
  • Die Nulllage der potentiellen Energie wird meist auf die negative Platte gelegt.

Zum Artikel Zu den Aufgaben

Magnetfeld eines geraden Leiters

Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld um einen geraden Leiter verläuft in konzentrischen Kreisen um den Leiter.
  • Richtung und Stärke des Magnetfeldes werden u.a. von Stromstärke und Stromrichtung im Leiter bestimmt.
  • Die Richtung und die Orientierung des Magnetfeldes kannst du mit der Rechten-Faust-Regel ermitteln.

Zum Artikel Zu den Aufgaben

Magnetfeld einer Zylinderspule

Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Magnetfeld im Innenraum einer langgestreckten Spule ist annähernd homogen.
  • Für die magnetische Feldstärke (magnetische Flussdichte) in einer luftgefüllten Spule gilt \(B = {\mu _0} \cdot \frac{{I \cdot N}}{l}\).
  • Die magnetische Feldstärke kann mithilfe ferromagnetischer Stoffe im Innenraum um den materialabhängigen Faktor \(\mu_r\) verstärkt werden.

Zum Artikel Zu den Aufgaben

Magnetfeld und Feldlinien

Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel
Grundwissen

  • Das Magnetfeld ist der Wirkungsbereich eines Magneten. Es beschreibt seine Kraftwirkung auf einen anderen Magneten.
  • Magnetfelder können mit Feldlinienbildern dargestellt werden.
  • Magnetische Feldlinien verlaufen außerhalb des Magneten vom Nord- zum Südpol und schneiden sich nicht.
  • Die Erde ist von einem Magnetfeld umgeben. Am geografischen Nordpol ist der magnetische Südpol.

Zum Artikel Zu den Aufgaben

Totalreflexion

Grundwissen

  • Beim Übergang zwischen zwei Medien wird ein Teil des Lichtes reflektiert.
  • Nur beim Übergang vom optisch dichteren zum optisch dünneren Medium kann Totalreflexion auftreten.
  • Den Grenzwinkel der Totalreflexion \(\alpha_{\rm{Gr}}\) hängt von den beiden Materialien ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Übergang zwischen zwei Medien wird ein Teil des Lichtes reflektiert.
  • Nur beim Übergang vom optisch dichteren zum optisch dünneren Medium kann Totalreflexion auftreten.
  • Den Grenzwinkel der Totalreflexion \(\alpha_{\rm{Gr}}\) hängt von den beiden Materialien ab.

Zum Artikel Zu den Aufgaben