Direkt zum Inhalt
Suchergebnisse 91 - 120 von 154

Einheitenumrechnung beim Druck

Grundwissen

  • Physikalische Größen sind das Produkt aus einer Maßzahl und einer Maßeinheit.
  • Die SI-Einheit des Drucks ist \(\left[ p \right] = 1\,\rm{Pa}\).
  • Häufig werden Drücke in der Einheit \(\rm{bar}\) angegeben. Dabei gilt: \(1\,\rm{bar}=100000\,\rm{Pa}=10^5\,\rm{Pa}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Physikalische Größen sind das Produkt aus einer Maßzahl und einer Maßeinheit.
  • Die SI-Einheit des Drucks ist \(\left[ p \right] = 1\,\rm{Pa}\).
  • Häufig werden Drücke in der Einheit \(\rm{bar}\) angegeben. Dabei gilt: \(1\,\rm{bar}=100000\,\rm{Pa}=10^5\,\rm{Pa}\).

Zum Artikel Zu den Aufgaben

Hydraulische Systeme

Grundwissen

  • Hydraulische Systeme sind Kraftwandler und übertragen Kräfte mit Hilfe von Flüssigkeiten.
  • Die Verstärkung einer Kraft \(F\) wird bestimmt durch das Verhältnis der Flächen von Druckkolben zu Hubkolben \(\frac{A_2}{A_1}\).
  • Der Druck \(p\) in hydraulischen Systemen ist mit bis zu \(200\,\rm{bar}\) sehr groß.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Hydraulische Systeme sind Kraftwandler und übertragen Kräfte mit Hilfe von Flüssigkeiten.
  • Die Verstärkung einer Kraft \(F\) wird bestimmt durch das Verhältnis der Flächen von Druckkolben zu Hubkolben \(\frac{A_2}{A_1}\).
  • Der Druck \(p\) in hydraulischen Systemen ist mit bis zu \(200\,\rm{bar}\) sehr groß.

Zum Artikel Zu den Aufgaben

Die physikalische Arbeit

Grundwissen

  • Der Betrag der verrichteten Arbeit \(W\) entspricht dem Betrag \(\Delta E\), um den sich die Energie eines Systems bei einem Vorgang verändert.
  • Allgemein gilt in der Mechanik für die Arbeit \(W=E_{\rm{nachher}}-E_{\rm{vorher}}\).
  • Wenn eine konstante Kraft mit dem Betrag \(F_{\rm{s}}\) längs eines Weges \(s\) wirkt, so wird die Arbeit \(W=F_{\rm{s}}\cdot s\) verrichtet.
  • Wichtige Typen der Arbeit sind: Hubarbeit, Beschleunigungsarbeit, Spannarbeit und Reibarbeit. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Betrag der verrichteten Arbeit \(W\) entspricht dem Betrag \(\Delta E\), um den sich die Energie eines Systems bei einem Vorgang verändert.
  • Allgemein gilt in der Mechanik für die Arbeit \(W=E_{\rm{nachher}}-E_{\rm{vorher}}\).
  • Wenn eine konstante Kraft mit dem Betrag \(F_{\rm{s}}\) längs eines Weges \(s\) wirkt, so wird die Arbeit \(W=F_{\rm{s}}\cdot s\) verrichtet.
  • Wichtige Typen der Arbeit sind: Hubarbeit, Beschleunigungsarbeit, Spannarbeit und Reibarbeit. 

Zum Artikel Zu den Aufgaben

Energieeinheiten

Grundwissen

  • Sowohl Joule, als auch Kilowattstunden und Kilocalorien sind Einheiten für die Energie.
  • Es ist \(1\,\rm{kWh} = 3{,}6\cdot 10^6\,\rm{J}\) und \(1\,\rm{kcal} = 4{,}186\cdot 10^3\,\rm{J}\).
  • Pferdestärken sind eine Einheit für die Leistung und es gilt \(1\,\rm{PS} = 0{,}735\,\rm{kW}\).

Zum Artikel
Grundwissen

  • Sowohl Joule, als auch Kilowattstunden und Kilocalorien sind Einheiten für die Energie.
  • Es ist \(1\,\rm{kWh} = 3{,}6\cdot 10^6\,\rm{J}\) und \(1\,\rm{kcal} = 4{,}186\cdot 10^3\,\rm{J}\).
  • Pferdestärken sind eine Einheit für die Leistung und es gilt \(1\,\rm{PS} = 0{,}735\,\rm{kW}\).

Zum Artikel Zu den Aufgaben

Federpendel angeregt

Grundwissen

  • Beim angeregten Federpendel muss die äußere Kraft \(F_{\rm{A}}\) im Kraftansatz berücksichtigt werden.

Zum Artikel
Grundwissen

  • Beim angeregten Federpendel muss die äußere Kraft \(F_{\rm{A}}\) im Kraftansatz berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Stehende Wellen - Entstehung

Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen können bei Überlagerung von zwei Wellen gleicher Frequenz und gleicher Amplitude entstehen.
  • Bei stehenden Wellen bilden sich Knoten (keine Auslenkung) und Bäuche (maximale Auslenkung im Vergleich zur Umgebung) aus.
  • Der Abstand zwischen zwei Knoten bzw. Bäuchen beträgt \(\frac{\lambda}{2}\) der sich überlagernden Wellen.

Zum Artikel Zu den Aufgaben

Wellenfunktion

Grundwissen

  • Die Wellenfunktion beschreibt die Auslenkung eines von der Welle erfassten Teilchens in \(y\)-Richtung an einem beliebigen Ort \(x\) zu einem beliebigen Zeitpunkt \(t\).
  • Die Wellenfunktion für eine in positive \(x\)-Richtung laufende Welle lautet \(y(x;t) = \hat y \cdot \sin \left( {2\,\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Wellenfunktion beschreibt die Auslenkung eines von der Welle erfassten Teilchens in \(y\)-Richtung an einem beliebigen Ort \(x\) zu einem beliebigen Zeitpunkt \(t\).
  • Die Wellenfunktion für eine in positive \(x\)-Richtung laufende Welle lautet \(y(x;t) = \hat y \cdot \sin \left( {2\,\pi  \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)

Zum Artikel Zu den Aufgaben

Gesamtkraft mehrerer Kräfte

Grundwissen

  • Wenn zwei Kräfte an einem Punkt angreifen, dann kann man zeichnerisch die sogenannte Gesamtkraft \(\vec F_{\rm{res}}\) bestimmen. Diese Gesamtkraft hat die gleiche Wirkung auf den Körper hat wie die beiden Einzelkräfte zusammen. 
  • Der zweite Kraftvektor wird so parallel verschoben, dass sein Fußpunkt an der Spitze des ersten Kraftvektors zu liegen kommt.
  • Der Vektor der Gesamtkraft beginnt beim Fußpunkt des ersten Kraftvektors und endet an der Spitze des zweiten Kraftvektors.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn zwei Kräfte an einem Punkt angreifen, dann kann man zeichnerisch die sogenannte Gesamtkraft \(\vec F_{\rm{res}}\) bestimmen. Diese Gesamtkraft hat die gleiche Wirkung auf den Körper hat wie die beiden Einzelkräfte zusammen. 
  • Der zweite Kraftvektor wird so parallel verschoben, dass sein Fußpunkt an der Spitze des ersten Kraftvektors zu liegen kommt.
  • Der Vektor der Gesamtkraft beginnt beim Fußpunkt des ersten Kraftvektors und endet an der Spitze des zweiten Kraftvektors.

Zum Artikel Zu den Aufgaben

Zerlegung einer Kraft in zwei Komponenten

Grundwissen

  • Zur eindeutigen Bestimmung des Kräfteparallelogramms müssen z.B. die resultierende Kraft und die Richtungen beider Teilkräfte bekannt sein.
  • Weg 1: Zeichnen zweier Geraden, die zu den vorgegebenen Richtungen parallel sind und durch die Pfeilspitze des gegebenen Kraftvektors gehen.
  • Weg 2: Parallelverschiebung eines Kraftvektors entlang des anderen Kraftvektors.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur eindeutigen Bestimmung des Kräfteparallelogramms müssen z.B. die resultierende Kraft und die Richtungen beider Teilkräfte bekannt sein.
  • Weg 1: Zeichnen zweier Geraden, die zu den vorgegebenen Richtungen parallel sind und durch die Pfeilspitze des gegebenen Kraftvektors gehen.
  • Weg 2: Parallelverschiebung eines Kraftvektors entlang des anderen Kraftvektors.

Zum Artikel Zu den Aufgaben

Seil und Rolle

Grundwissen

  • An einer Rolle herrscht Kräftegleichgewicht, wenn die beiden Seilkräfte \(F\) links und rechts gleich groß sind und die den Seilkräften entgegengerichtete Kraft auf die Rollenachse \(2\cdot F\) beträgt.
  • Durch den Einsatz einer losen Rolle halbiert sich die notwendige Zugkraft \(F\) und eine Last mit der Gewichtskraft \(F_g\) anzuheben, dafür muss du das Seil doppelt so lange ziehen.
  • Du kannst lose und feste Rollen zu einem Flaschenzug kombinieren.

Zum Artikel
Grundwissen

  • An einer Rolle herrscht Kräftegleichgewicht, wenn die beiden Seilkräfte \(F\) links und rechts gleich groß sind und die den Seilkräften entgegengerichtete Kraft auf die Rollenachse \(2\cdot F\) beträgt.
  • Durch den Einsatz einer losen Rolle halbiert sich die notwendige Zugkraft \(F\) und eine Last mit der Gewichtskraft \(F_g\) anzuheben, dafür muss du das Seil doppelt so lange ziehen.
  • Du kannst lose und feste Rollen zu einem Flaschenzug kombinieren.

Zum Artikel Zu den Aufgaben

Hebel

Grundwissen

  • Als Hebel bezeichnet man einen starren Körper, der um eine feste Drehachse gedreht werden kann, z.B. eine Wippe. 
  • Ein zweiseitiger Hebel ist im Gleichgewicht, wenn die Produkte aus Kraft \(F\) und Hebelarm \(a\) auf beiden Seiten der Drehachse gleich groß ist: \(F_{\rm{l}}\cdot a_{\rm{l}}=F_{\rm{r}}\cdot a_{\rm{r}}\)
  • Allgemein ist der Hebelarm \(a\) bestimmt durch den Abstand zwischen Drehachse \(\rm{D}\) und der Wirkungslinie der Kraft \(F\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Hebel bezeichnet man einen starren Körper, der um eine feste Drehachse gedreht werden kann, z.B. eine Wippe. 
  • Ein zweiseitiger Hebel ist im Gleichgewicht, wenn die Produkte aus Kraft \(F\) und Hebelarm \(a\) auf beiden Seiten der Drehachse gleich groß ist: \(F_{\rm{l}}\cdot a_{\rm{l}}=F_{\rm{r}}\cdot a_{\rm{r}}\)
  • Allgemein ist der Hebelarm \(a\) bestimmt durch den Abstand zwischen Drehachse \(\rm{D}\) und der Wirkungslinie der Kraft \(F\).

Zum Artikel Zu den Aufgaben

Energieformen

Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann in unterschiedlichen Formen vorliegen.

Zum Artikel Zu den Aufgaben

Grundbegriffe zu Periodischen Bewegungen und Schwingungen

Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel
Grundwissen

  • Bei einer periodischen Bewegung hat ein Körper nach einer Periodendauer \(T\) wieder den gleichen Bewegungszustand.
  • Für die Frequenz einer periodischen Bewegung gilt \(f=\frac{1}{T}\).
  • Die Amplitude einer Schwingung ist der Betrag des Maximalwerts der Auslenkung aus der Ruhelage.

Zum Artikel Zu den Aufgaben

Größen zur Beschreibung einer Welle

Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Größen zur Beschreibung einer Welle sind ihre Amplitude \(\hat{y}\), ihre Schwingungsdauer \(T\), ihre Frequenz \(f\) und ihre Phasen- bzw. Ausbreitungsgeschwindigkeit \(c\).
  • Dabei gilt der Zusammenhang \(\lambda  = c \cdot T = \frac{c}{f}\)

Zum Artikel Zu den Aufgaben

Schweredruck

Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Schweredruck bezeichnet man einen Druck, den ein Körper nur auf Grund der Gewichtskraft der über ihm liegenden Flüssigkeits- oder Gassäule erfährt.
  • Für den Schweredruck gilt \({p = \rho \cdot g \cdot h}\).
  • Der Schweredruck ist unabhängig von Form und Querschnittsfläche der Flüssigkeitssäule.

Zum Artikel Zu den Aufgaben

Gesetz von HOOKE

Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das HOOKEsche Gesetz beschreibt die Wirkung einer Kraft auf elastische Körper wie Federn.
  • Die Federkonstante (Federhärte) wird mit \(D\) bezeichnet.
  • Es gilt \(F=D\cdot \Delta x\) mit der Längenänderung der \(\Delta x\) der Feder.

Zum Artikel Zu den Aufgaben

Umrechnen von Einheiten der Kraft

Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel
Grundwissen

  • Physikalische Größen bestehen immer aus Zahlenwert (Maßzahl) und Einheit.
  • Verschiedene Einheiten der Kraft kannst du ineinander umrechnen.

Zum Artikel Zu den Aufgaben

Umstellen einer Gleichung

Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel
Grundwissen

  • Formeln musst du manchmal umstellen, um die gesuchte Größe berechnen zu können.
  • Hilfreich als Merkregel ist dabei das entsprechende Größendreieck.

Zum Artikel Zu den Aufgaben

Impuls und Impulserhaltungssatz

Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Impuls ist das Produkt von Masse und Geschwindigkeit eines Körpers: \(\vec{p}=m\cdot\vec{v}\).
  • In einem abgeschlossenen System ist der Impuls erhalten (Impulserhaltungssatz).

Zum Artikel Zu den Aufgaben

Kraftwandler

Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kraftwandler ändern den Angriffspunkt, die Richtung, den Betrag oder mehrere dieser Eigenschaften einer Kraft.
  • typische Beispiele für Kraftwandler sind Seil, Hebel, Rolle und Flaschenzug.

Zum Artikel Zu den Aufgaben

Kräfteaddition

Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wirken zwei oder mehr Kräfte auf einen Körper, so kannst du diese durch eine einzige resultierende Kraft \(\vec{F_{\rm{r}}}\) ersetzen.
  • Die Richtung und den Betrag (die Stärke) der resultierenden Kraft kannst du grafisch ermitteln.
  • Zeigen die angreifenden Kräfte in unterschiedliche Richtungen, so addierst du diese mittels Kräfteparallelogramm oder Kräftedreieck.

Zum Artikel Zu den Aufgaben

Flächen- und Volumenberechnung

Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flächeneinheiten besitzen immer die Hochzahl \(2\), z.B. \(\rm{cm^2}\), Volumeneinheiten die Hochzahl \(3\), z.B. \(\rm{cm^3}\).
  • Die Umrechnungszahl von einer Flächeneinheit zur benachbarten ist \(100\).
  • Die Umrechnungszahl von einer Volumeneinheit zur benachbarten ist \(1000\).

Zum Artikel Zu den Aufgaben

Durchschnitts- und Momentangeschwindigkeit

Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Durchschnittsgeschwindigkeit ist \(\bar v = \frac{{\Delta x}}{{\Delta t}} = \frac{{{x_{\rm{E}}} - {x_{\rm{A}}}}}{{{t_{\rm{E}}} - {t_{\rm{A}}}}}\), wobei "A" jeweils für Anfang und "E" für Ende steht.
  • Wenn das Zeitintervall \(\Delta t\) möglichst klein, nahezu Null wird, erhält man die Momentangeschwindigkeit \(v = \frac{{\Delta x}}{{\Delta t}}\;\;{\rm{mit}}\;\;\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Mittlere und Momentanbeschleunigung

Grundwissen

  • Die mittlere Beschleunigung ist definiert als Geschwindigkeitsänderung geteilt durch die dafür benötigte Zeit, kurz \(\overline{a} = \frac{v_e - v_a}{t_e - t_a}\)
  • Negative Beschleunigungen entstehen wenn die Änderung der Geschwindigkeit \(\Delta v\) negativ ist.
  • Für die Momentanbeschleunigung \(a\) wählt man ein möglichst kleines Zeitintervall: \(a= \frac{{\Delta v}}{{\Delta t}}{\text{ mit }}\Delta t \to 0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die mittlere Beschleunigung ist definiert als Geschwindigkeitsänderung geteilt durch die dafür benötigte Zeit, kurz \(\overline{a} = \frac{v_e - v_a}{t_e - t_a}\)
  • Negative Beschleunigungen entstehen wenn die Änderung der Geschwindigkeit \(\Delta v\) negativ ist.
  • Für die Momentanbeschleunigung \(a\) wählt man ein möglichst kleines Zeitintervall: \(a= \frac{{\Delta v}}{{\Delta t}}{\text{ mit }}\Delta t \to 0\).

Zum Artikel Zu den Aufgaben

Flaschenzug

Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Flaschenzug spielt die Anzahl \(n\) der tragenden Seile eine wichtige Rolle.
  • Je größer die Zahl der tragenden Seile ist, desto weniger Zugkraft \(F_Z\) musst du aufbringen, um eine Last \(F_L\) anzuheben. Dafür verlängert sich die notwendige Zugstrecke \(s_Z\), um eine Last die Strecke \(s_L\) anzuheben.
  • Für die Zugkraft gilt \(F_Z=\frac{1}{n}\cdot F_L\), für die Zugstrecke hingegen \(s_Z=n\cdot s_L\).

Zum Artikel Zu den Aufgaben

Gleitreibung

Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gleitreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird und der eine Körper relativ zu dem anderen Körper gleitet.
  • Die Gleitreibungskraft \(\vec F_{\rm{GR}}\) wirkt immer entgegen der Bewegungsrichtung des Körpers.
  • Für den Betrag der Gleitreibungskraft gilt \(F_{\rm{GR}}=\mu _{\rm{GR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{GR}}\) der Gleitreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Rollreibung

Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Rollreibung tritt auf, wenn z.B. ein Rad durch eine Kraft gegen eine Unterlage gedrückt wird und das Rad über die Unterlage rollt.
  • Die Rollreibungskraft \(\vec F_{\rm{RR}}\) wirkt immer entgegen der Bewegungsrichtung des Rades.
  • Für den Betrag der Rollreibungskraft gilt \(F_{\rm{RR}}=\mu _{\rm{RR}}\cdot F_{\rm{N}}\), wobei \(\mu _{\rm{RR}}\) der Rollreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Haftreibung

Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Haftreibung tritt auf, wenn ein Körper durch eine Kraft gegen einen anderen Körper gedrückt wird, der eine Körper relativ zu dem anderen Körper ruht und auf einen der Körper eine Zugkraft \(\vec F_{\rm{Z}}\) wirkt.
  • Bis zur maximalen Haftreibungskraft \(F_{\rm{HR,max}}\) sind Zugkraft und Haftreibungskraft gleich groß, aber entgegengesetzt gerichtet, sodass der Körper in Ruhe bleibt.
  • Für die maximale Haftreibungskraft gilt \({F_{\rm{HR,max}}} = \mu _{\rm{HR}} \cdot {F_{\rm{N}}}\), wobei \(\mu _{\rm{HR}}\) der Haftreibungskoeffizient ist.

Zum Artikel Zu den Aufgaben

Viskose Reibung

Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel
Grundwissen

  • Viskose Reibung beschreibt die Reibung eines Körpers bei der Bewegung in einer Flüssigkeit (oder einem Gas).
  • Mathematisch kann die viskose Reibung gut für Kugeln beschrieben werden.
  • Es gilt \(F_{\rm{VR}}=6\cdot \pi\cdot r\cdot \eta\cdot v\), wobei \(\eta\) die dynamische Viskosität der Flüssigkeit ist \(r\) der Radius der Kugel und \(v\) ihre Geschwindigkeit. 

Zum Artikel Zu den Aufgaben

Luftreibung

Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel
Grundwissen

  • Die Luftreibung nimmt quadratisch mit der Geschwindigkeit zu.
  • Die Querschnittsfläche \(A\) des Körpers und der von der Form abhängige Luftwiderstandsbeiwert \(c_{\rm{w}}\) beeinflussen die Luftreibung.
  • Mathematisch gilt: \(F_{\rm{LR}}=\frac{1}{2}\cdot A\cdot c_{\rm{w}}\cdot \rho_{\rm{Luft}}\cdot v^2\)

Zum Artikel Zu den Aufgaben