Direkt zum Inhalt
Suchergebnisse 91 - 120 von 238

Energieumwandlung

Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Energie kann zwischen verschiedenen Energieformen umgewandelt werden, z.B. von potentieller in kinetische Energie.
  • Bei einer Umwandlung geht jedoch zumeist ein kleiner Teil nicht in die gewünschte Energieform über und steht anschließend nicht mehr für weitere Umwandlungen zur Verfügung.
  • Finden mehrere Energieumwandlungen hintereinander statt, so werden diese häufig in einem Energieflussdiagrammen dargestellt.

Zum Artikel Zu den Aufgaben

Energieerhaltung

Grundwissen

  • In einem reibungsfreien System bleibt die Gesamtenergie gleich, wenn es von außen nicht beeinflusst wird.
  • Mathematisch kannst du die Energieerhaltung ausdrücken als \(E_{\rm{ges}}=E_{\rm{kin}}+E_{\rm{pot}}+E_{\rm{spann}}=\rm{konstant}\).
  • Dabei können sich die einzelnen Anteile der drei Energieformen fortlaufend ändern, wie z.B. bei einem Skater in der Halfpipe.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem reibungsfreien System bleibt die Gesamtenergie gleich, wenn es von außen nicht beeinflusst wird.
  • Mathematisch kannst du die Energieerhaltung ausdrücken als \(E_{\rm{ges}}=E_{\rm{kin}}+E_{\rm{pot}}+E_{\rm{spann}}=\rm{konstant}\).
  • Dabei können sich die einzelnen Anteile der drei Energieformen fortlaufend ändern, wie z.B. bei einem Skater in der Halfpipe.

Zum Artikel Zu den Aufgaben

Goldene Regel der Mechanik

Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Durch Einsatz eines Kraftwandlers muss man oft weniger Kraft aufbringen, diese aber dann entlang eines längeren Weges.
  • Das Produkt aus Kraft (entlang des Weges) und Weg ändert sich nicht beim Einsatz eines Kraftwandlers.
  • Physikalische Arbeit kann nicht "gespart" werden.

Zum Artikel Zu den Aufgaben

Leistung

Grundwissen

  • Die Leistung ist der Quotient aus der verrichteten Arbeit und der dafür benötigten Zeit
  • Die Leistung berechnest du mit der Formel \(P = \frac{{W}}{{\Delta t}}\)
  • Die Einheit der Leistung ist Watt: \(\left[ P \right] = 1\frac{\rm{J}}{\rm{s}} = 1\rm{W}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Leistung ist der Quotient aus der verrichteten Arbeit und der dafür benötigten Zeit
  • Die Leistung berechnest du mit der Formel \(P = \frac{{W}}{{\Delta t}}\)
  • Die Einheit der Leistung ist Watt: \(\left[ P \right] = 1\frac{\rm{J}}{\rm{s}} = 1\rm{W}\)

Zum Artikel Zu den Aufgaben

Wirkungsgrad

Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Wirkungsgrad gibt an, welcher Anteil der zugeführten Energie bei einer Umwandlung in die gewünschte Energieform umgewandelt wird.
  • Für den Wirkungsgrad gilt \(\eta=\frac{\Delta E_{\rm{nutz}}}{\Delta E_{\rm{zu}}}\).
  • Der Wirkungsgrad kann auch entsprechend über die Leistung ermittelt werden: \(\eta=\frac{P_{\rm{nutz}}}{P_{\rm{zu}}}\)

Zum Artikel Zu den Aufgaben

Volumen- und Längenänderung von Festkörpern

Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
  • Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
  • Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).

Zum Artikel Zu den Aufgaben

Herleitung der Auftriebskraft aus dem Schweredruck

Grundwissen

  • Ursache für den Auftrieb ist der Schweredruck.
  • Die Auftriebskraft ist gleich dem Gewicht der verdrängten Flüssigkeit bzw. des verdrängten Gases.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ursache für den Auftrieb ist der Schweredruck.
  • Die Auftriebskraft ist gleich dem Gewicht der verdrängten Flüssigkeit bzw. des verdrängten Gases.

Zum Artikel Zu den Aufgaben

Auftriebskraft

Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit oder ein Gas eingetaucht sind.
  • Der Betrag der Auftriebskraft ist \({F_{\rm{A}}} = {\rho _{{\rm{Medium}}}} \cdot {V_{\rm{K}}} \cdot g\) (Gesetz des Archimedes).

Zum Artikel Zu den Aufgaben

Viertakt-Ottomotor

Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
  • Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
  • Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.

Zum Artikel Zu den Aufgaben

Sehvorgang

Grundwissen

  • Dein Auge ist - ähnlich wie eine Kamera - ein "Lichtempfänger".
  • Du siehst einen Gegenstand nur dann, wenn Licht von diesem Gegenstand aus in dein Auge fällt.
  • Nicht selbstleuchtende Gegenstände, wie eine Blume, siehst du, wenn diese Gegenstände das Licht von einer Lichtquelle in dein Auge zurückwerfen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Dein Auge ist - ähnlich wie eine Kamera - ein "Lichtempfänger".
  • Du siehst einen Gegenstand nur dann, wenn Licht von diesem Gegenstand aus in dein Auge fällt.
  • Nicht selbstleuchtende Gegenstände, wie eine Blume, siehst du, wenn diese Gegenstände das Licht von einer Lichtquelle in dein Auge zurückwerfen.

Zum Artikel Zu den Aufgaben

Reflexionsgesetz

Grundwissen

Das Reflexionsgesetz besagt:

  • Der einfallende Strahl, das Einfallslot und der reflektierte Strahl liegen in einer Ebene.
  • Der Einfallswinkel und der Ausfallswinkel sind gleich groß. Es gilt \(\alpha = \alpha '\).
  • Weiter ist der Lichtweg umkehrbar. Das heißt fällt das Licht aus der Richtung des reflektierten Strahls ein, so wird es in die Richtung des einfallenden Strahls reflektiert.

Zum Artikel Zu den Aufgaben
Grundwissen

Das Reflexionsgesetz besagt:

  • Der einfallende Strahl, das Einfallslot und der reflektierte Strahl liegen in einer Ebene.
  • Der Einfallswinkel und der Ausfallswinkel sind gleich groß. Es gilt \(\alpha = \alpha '\).
  • Weiter ist der Lichtweg umkehrbar. Das heißt fällt das Licht aus der Richtung des reflektierten Strahls ein, so wird es in die Richtung des einfallenden Strahls reflektiert.

Zum Artikel Zu den Aufgaben

Zeit-Ort-Diagramm

Grundwissen

  • Die Bewegung eines Körpers beschreiben wir u.a. in einem Zeit-Ort-Diagramm.
  • Verläuft der Zeit-Ort-Graph horizontal, dann ruht der Körper.
  • Steigt der Zeit-Ort-Graph so bewegt sich der Körper "vorwärts", fällt der Graph, so bewegt sich der Körper "rückwärts".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bewegung eines Körpers beschreiben wir u.a. in einem Zeit-Ort-Diagramm.
  • Verläuft der Zeit-Ort-Graph horizontal, dann ruht der Körper.
  • Steigt der Zeit-Ort-Graph so bewegt sich der Körper "vorwärts", fällt der Graph, so bewegt sich der Körper "rückwärts".

Zum Artikel Zu den Aufgaben

Zeit-Geschwindigkeit-Diagramm

Grundwissen

  • Aus einem Zeit-Ort-Diagramm kannst du auch ein Zeit-Geschwindigkeit-Diagramm gewinnen.
  • Waagrechte Teil zeigen eine konstante Geschwindigkeit, also eine gleichförmige Bewegung.
  • Ansteigende bzw. abfallende Kurventeile weisen auf eine Zunahme oder Abnahme der Geschwindigkeit hin (Beschleunigungsvorgänge)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus einem Zeit-Ort-Diagramm kannst du auch ein Zeit-Geschwindigkeit-Diagramm gewinnen.
  • Waagrechte Teil zeigen eine konstante Geschwindigkeit, also eine gleichförmige Bewegung.
  • Ansteigende bzw. abfallende Kurventeile weisen auf eine Zunahme oder Abnahme der Geschwindigkeit hin (Beschleunigungsvorgänge)

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegungen

Grundwissen

Für eine gleichförmige Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=v\cdot t + x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=v\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=0\)

Zum Artikel Zu den Aufgaben
Grundwissen

Für eine gleichförmige Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=v\cdot t + x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=v\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=0\)

Zum Artikel Zu den Aufgaben

Gleichmäßig beschleunigte Bewegungen

Grundwissen

Für eine gleichmäßig beschleunigte Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=\frac{1}{2} \cdot a \cdot t^2 +v_0\cdot t+ x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=a\cdot t + v_0\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=a\)

Zum Artikel Zu den Aufgaben
Grundwissen

Für eine gleichmäßig beschleunigte Bewegung gelten die folgenden Bewegungsgesetze:

  • Zeit-Ort-Gesetz: \(x(t)=\frac{1}{2} \cdot a \cdot t^2 +v_0\cdot t+ x_0\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t)=a\cdot t + v_0\)
  • Zeit-Beschleunigung-Gesetz: \(a(t)=a\)

Zum Artikel Zu den Aufgaben

Freier Fall

Grundwissen

  • Als Freien Fall bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) "einfach losgelassen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung ohne Anfangsgeschwindigkeit aus.
  • Für die Fallzeit des Körpers gilt \(t_{\rm{F}} = \sqrt {\frac{2 \cdot h}{g}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Freien Fall bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) "einfach losgelassen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung ohne Anfangsgeschwindigkeit aus.
  • Für die Fallzeit des Körpers gilt \(t_{\rm{F}} = \sqrt {\frac{2 \cdot h}{g}}\).

Zum Artikel Zu den Aufgaben

Wurf nach unten

Grundwissen

  • Als Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach unten geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach unten geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).

Zum Artikel Zu den Aufgaben

Wurf nach oben ohne Anfangshöhe

Grundwissen

  • Als Wurf nach oben ohne Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der vom Erdboden aus mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}}\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{2 \cdot v_{y,0}}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Wurf nach oben ohne Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der vom Erdboden aus mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
  • Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
  • Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}}\).
  • Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{2 \cdot v_{y,0}}{g}\).

Zum Artikel Zu den Aufgaben

Waagerechter Wurf

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim freien Fall mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{v_0}^2}\cdot x^2+h\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim freien Fall mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + h\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{v_0}^2}\cdot x^2+h\).

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit und Winkelgeschwindigkeit

Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Bahngeschwindigkeit \(v\) ist der Quotient aus der auf der Kreisbahn zurückgelegten Streckenlänge und der dafür benötigten Zeit: \(v = \frac{\Delta s}{\Delta t}\) bzw. \(v = \frac{2 \cdot \pi \cdot r}{T}\).
  • Die Winkelgeschwindigkeit \(\omega\) ist der Quotient aus der Weite des vom Bahnradius überstrichenen Winkels und der dafür benötigten Zeit: \(\omega = \frac{\Delta \varphi}{\Delta t}\) bzw. \(\omega = \frac{2 \cdot \pi}{T}\).
  • Zwischen der Bahngeschwindigkeit und der Winkelgeschwindigkeit besteht der Zusammenhang \(v = \omega \cdot r\;\;\;{\rm{bzw.}}\;\;\;\omega = \frac{v}{r}\)

Zum Artikel Zu den Aufgaben

Bahngeschwindigkeit vektoriell

Grundwissen

  • Der Vektor der Bahngeschwindigkeit \(\vec{v}\) steht stets senkrecht dem Radiusvektor \(\vec{r}\).
  • Vektorielle Überlegungen bestätigen die skalaren Überlegungen zur Bahngeschwindigkeit \(v=r\cdot\omega\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Vektor der Bahngeschwindigkeit \(\vec{v}\) steht stets senkrecht dem Radiusvektor \(\vec{r}\).
  • Vektorielle Überlegungen bestätigen die skalaren Überlegungen zur Bahngeschwindigkeit \(v=r\cdot\omega\)

Zum Artikel Zu den Aufgaben

Zentripetalkraft

Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine gleichförmige Kreisbewegung benötigt immer eine zum Drehzentrum gerichtete Kraft; eine solche Kraft bezeichnen wir als Zentripetalkraft \(\vec F_{\rm{ZP}}\).
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot {\frac{v^2}{r}}\) wirken.
  • Bewegt sich ein Körper der Masse \(m\) auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), dann muss auf den Körper eine Zentripetalkraft \(\vec F_{\rm{ZP}}\) mit dem Betrag \(F_{\rm{ZP}} = m \cdot \omega^2 \cdot r\) wirken.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung vektoriell

Grundwissen

  • Der Vektor \(\vec{a}_{\rm{R}}\) der Momentanbeschleunigung und der Vektor \(\vec{v}\) der Momentangeschwindigkeit stehen aufeinander senkrecht: \( \vec{a}_{\rm{R}}\bot\vec{v}\).
  • Der Vektor der Momentanbeschleunigung zeigt bei der Kreisbewegung immer auf den Kreismittelpunkt.
  • Für den Betrag der Momentanbeschleunigung gilt \(a_{\rm{R}}=r\cdot \omega^2=\frac{v^2}{r}\)

Zum Artikel
Grundwissen

  • Der Vektor \(\vec{a}_{\rm{R}}\) der Momentanbeschleunigung und der Vektor \(\vec{v}\) der Momentangeschwindigkeit stehen aufeinander senkrecht: \( \vec{a}_{\rm{R}}\bot\vec{v}\).
  • Der Vektor der Momentanbeschleunigung zeigt bei der Kreisbewegung immer auf den Kreismittelpunkt.
  • Für den Betrag der Momentanbeschleunigung gilt \(a_{\rm{R}}=r\cdot \omega^2=\frac{v^2}{r}\)

Zum Artikel Zu den Aufgaben

Bewegungsgesetze der Harmonischen Schwingung

Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel
Grundwissen

  • Zeit-Ort-Gesetz: \(y(t) = \hat y \cdot \sin \left( {\omega  \cdot t} \right)\) (oder \(y(t) = \hat y \cdot \cos \left( {\omega  \cdot t} \right)\)
  • Zeit-Geschwindigkeit-Gesetz: \(v(t) =\omega \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\) (oder \(v(t) = -\omega \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\))
  • Zeit-Beschleunigung-Gesetz: \(a(t) = - {\omega ^2} \cdot \hat y \cdot \sin \left( {\omega \cdot t} \right)\) (oder \(a(t) = -{\omega ^2} \cdot \hat y \cdot \cos \left( {\omega \cdot t} \right)\))

Zum Artikel Zu den Aufgaben

Erzwungene Schwingung

Grundwissen

  • Bei einer erzwungenen Schwingung wird ein schwingungsfähiges System durch einen äußeren Erreger zum Schwingen angeregt.
  • Wenn die Erregerfrequenz \(f\) in etwa die Eigenfrequenz \(f_0\) des schwingungsfähiges Systems ist, kann es bei geringer Dämpfung zur Resonanzkatastrophe kommen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer erzwungenen Schwingung wird ein schwingungsfähiges System durch einen äußeren Erreger zum Schwingen angeregt.
  • Wenn die Erregerfrequenz \(f\) in etwa die Eigenfrequenz \(f_0\) des schwingungsfähiges Systems ist, kann es bei geringer Dämpfung zur Resonanzkatastrophe kommen.

Zum Artikel Zu den Aufgaben

Wellentypen

Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel
Grundwissen

  • Wir unterteilen Wellen nach der Richtung, in der sich die Teilchen im Medium bewegen, in Transversalwellen, Longitudinalwellen und Wasserwellen.
  • Wir unterteilen Wellen nach der Art, wie sie sich im Raum ausbreiten, in Kreis- bzw. Kugelwellen und ebene Wellen.

Zum Artikel Zu den Aufgaben

Interferenz

Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Konstruktive Interferenz bedeutet eine Verstärkung, destruktive Interferenz bedeutet eine Auslöschung.
  • Der Gangunterschied \(\Delta s\) zwischen den zwei Quellen und dem Empfänger bestimmt, ob konstruktive oder destruktive Interferenz auftritt.
  • Winkelweite und Gangunterschied lassen sich besonders einfach berechnen, wenn der Abstand Sender-Empfänger groß ist gegenüber dem Abstand der beiden Sender.

Zum Artikel Zu den Aufgaben

Lichtbrechung - Einführung

Grundwissen

  • Ein Lichtstrahl ändert an der Grenzfläche zweier Medien unterschiedlicher optischer Dichte seine Ausbreitungsrichtung. Der Strahl wird gebrochen.
  • Beim Übergang vom optisch dünneren zum optisch dichteren Medium wird der Strahl zum Lot hin gebrochen \({\left(\alpha_{1}> \alpha_{2}\right)}\).
  • Beim Übergang vom optisch dichteren zum optisch dünneren Medium wird der Strahl vom Lot weg gebrochen \({\left(\alpha_{1}< \alpha_{2}\right)}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Lichtstrahl ändert an der Grenzfläche zweier Medien unterschiedlicher optischer Dichte seine Ausbreitungsrichtung. Der Strahl wird gebrochen.
  • Beim Übergang vom optisch dünneren zum optisch dichteren Medium wird der Strahl zum Lot hin gebrochen \({\left(\alpha_{1}> \alpha_{2}\right)}\).
  • Beim Übergang vom optisch dichteren zum optisch dünneren Medium wird der Strahl vom Lot weg gebrochen \({\left(\alpha_{1}< \alpha_{2}\right)}\).

Zum Artikel Zu den Aufgaben

Linsenformen

Grundwissen

Joachim Herz Stiftung
Abb. 1 Strahlengang bei Konvex- und Konkavlinsen
  • Konvexlinsen, auch Sammellinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Brennpunkt kreuzen.
  • Konkavlinsen, auch Zerstreuungslinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Raum zerstreuen.
  • Die Sammel- bzw. Zerstreuungswirkung von Linsen kann mithilfe der Brechungseigenschaften von Prismen erklärt werden.

Zum Artikel
Grundwissen

Joachim Herz Stiftung
Abb. 1 Strahlengang bei Konvex- und Konkavlinsen
  • Konvexlinsen, auch Sammellinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Brennpunkt kreuzen.
  • Konkavlinsen, auch Zerstreuungslinsen genannt, brechen parallel einfallende Lichtstrahlen so, dass sich die Lichtstrahlen im Raum zerstreuen.
  • Die Sammel- bzw. Zerstreuungswirkung von Linsen kann mithilfe der Brechungseigenschaften von Prismen erklärt werden.

Zum Artikel Zu den Aufgaben

Begriffe bei der Linsenabbildung

Grundwissen

  • Bei Konvexlinsen ist der Brennpunkt \(\rm{F_1}\) der Punkt, in dem sich parallel zur optischen Achse verlaufende Lichtstrahlen nach der Brechung durch die Linse auf der optischen Achse schneiden.
  • Bei Konkavlinsen ist der Brennpunkt \(\rm{F_1}\) der Schnittpunkt der nach rückwärts verlängerten, gebrochenen Strahlen.
  • Die Brennweite \(f\) ist der Abstand des Brennpunktes zu Linsenebene.
  • Gegenstandsweite \(g\) und Gegenstandsgröße \(G\) beziehen sich auf den abzubildenden Gegenstand, Bildweite \(b\) und Bildgröße \(B\) beziehen sich auf das Bild des Gegenstandes.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Konvexlinsen ist der Brennpunkt \(\rm{F_1}\) der Punkt, in dem sich parallel zur optischen Achse verlaufende Lichtstrahlen nach der Brechung durch die Linse auf der optischen Achse schneiden.
  • Bei Konkavlinsen ist der Brennpunkt \(\rm{F_1}\) der Schnittpunkt der nach rückwärts verlängerten, gebrochenen Strahlen.
  • Die Brennweite \(f\) ist der Abstand des Brennpunktes zu Linsenebene.
  • Gegenstandsweite \(g\) und Gegenstandsgröße \(G\) beziehen sich auf den abzubildenden Gegenstand, Bildweite \(b\) und Bildgröße \(B\) beziehen sich auf das Bild des Gegenstandes.

Zum Artikel Zu den Aufgaben