Suchergebnis für:
TORRICELLI-Gleichung
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
Dynamischer Auftrieb und \(c_{\rm{A}}\)-Wert
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
Strömungswiderstand und \(c_{\rm{w}}\)-Wert
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
Energie und ihre Eigenschaften
- Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
- Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
- Energieumwandlung: Energie kann von einer Form in eine ander Form umgewandelt werden.
- Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
- Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.
- Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
- Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
- Energieumwandlung: Energie kann von einer Form in eine ander Form umgewandelt werden.
- Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
- Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.
Wirkung einer Kraft als Zentripetalkraft
- Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
- Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.
- Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
- Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.
Schräger Wurf ohne Anfangshöhe
- Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
- In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
- In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
- Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0 \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).
- Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
- In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
- In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
- Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0 \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).
Zentripetalkraft als resultierende Kraft
- Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
- Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
- Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
- Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.
- Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
- Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
- Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
- Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.
Kreisbewegung unter Einfluss zusätzlicher Kräfte
- In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
- Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
- Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.
- In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
- Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
- Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.
Zentripetalbeschleunigung
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.
Wechselwirkung ungleich Gleichgewicht
- Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
- Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
- Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.
- Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
- Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
- Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.
Wellen
- Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
- Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
- Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.
- Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
- Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
- Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.
Ablesen von Kraftmessern
- Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
- Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt.
- Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
- Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt.
Federpendel
- Ein Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega _0} \cdot t} \right)\) mit \({\omega _0} = \sqrt {\frac{D}{m}}\)
- Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.
- Ein Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega _0} \cdot t} \right)\) mit \({\omega _0} = \sqrt {\frac{D}{m}}\)
- Die Schwingungsdauer berechnet sich durch \(T = 2\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.
Charakterisierung der gleichförmigen Bewegung
- Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
- Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
- Es gilt \(s=v\cdot t\)
- Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
- Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
- Es gilt \(s=v\cdot t\)
Geschwindigkeit bei gleichförmiger Bewegung
- Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
- Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
- Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)
- Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
- Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
- Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)
Mittlere Geschwindigkeit
- Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
- Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)
- Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
- Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)
Beschleunigte Bewegung
- Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers
- Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers
Charakterisierung der gleichmäßig beschleunigten Bewegung
- Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
- Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.
- Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
- Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.
Beschleunigung bei gleichmäßig beschleunigter Bewegung
- Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
- Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
- Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)
- Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
- Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
- Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)
Mittlere Beschleunigung
- Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
- Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)
- Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
- Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)
Raketenphysik
- Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
- Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
- Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.
- Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
- Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
- Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.
Bewegungsgesetze der gleichmäßig beschleunigten Bewegung
- Bei einer gleichmäßig beschleunigten Bewegung ist die Beschleunigung \(a\neq 0\).
- Das Zeit-Geschwindigkeit-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(v=a\cdot t\).
- Das Zeit-Ort-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(s=\frac{1}{2}a\cdot t^2\).
- Bei einer gleichmäßig beschleunigten Bewegung ist die Beschleunigung \(a\neq 0\).
- Das Zeit-Geschwindigkeit-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(v=a\cdot t\).
- Das Zeit-Ort-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(s=\frac{1}{2}a\cdot t^2\).
Potenzielle Energie im Gravitationsfeld
- Die potentielle Energie im Gravitationsfeld hängt von der Wahl des Nullpunktes der potentiellen Energie ab.
- Ist \(E_{{\rm{pot,Erde}}} = 0\), dann gilt \({E_{{\rm{pot}}}}(r) = G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{{\rm{Erde}}}}}} - \frac{1}{r}} \right)\text{ wobei }r \ge {r_{{\rm{Erde}}}}\)
- Typischer ist es, den Nullpunkt der potentiellen Energie ins Unendliche zu legen. Dann gilt \(E_{\rm{pot}}= -G \cdot m \cdot M \cdot \frac{1}{r}\text{ wobei } r \ge {r_{{\rm{Erde}}}}\)
- Die potentielle Energie im Gravitationsfeld hängt von der Wahl des Nullpunktes der potentiellen Energie ab.
- Ist \(E_{{\rm{pot,Erde}}} = 0\), dann gilt \({E_{{\rm{pot}}}}(r) = G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{{\rm{Erde}}}}}} - \frac{1}{r}} \right)\text{ wobei }r \ge {r_{{\rm{Erde}}}}\)
- Typischer ist es, den Nullpunkt der potentiellen Energie ins Unendliche zu legen. Dann gilt \(E_{\rm{pot}}= -G \cdot m \cdot M \cdot \frac{1}{r}\text{ wobei } r \ge {r_{{\rm{Erde}}}}\)
Gravitationsfeld
- Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
- Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
- Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
- Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).
- Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
- Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
- Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
- Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).
Arbeit im Gravitationsfeld
- Nur im homogenen Bereich des Gravitationsfeldes kann die Arbeit mit \(\Delta {W_{{\rm{Hub}}}} = m \cdot g \cdot \Delta h\) berechnet werden.
- Um einen Körper von der Erdoberfläche bis zu einem Abstand \(r\) vom Erdmittelpunkt zu bewegen, muss die Arbeit \(\Delta W=G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{\rm{A}}}}} - \frac{1}{{{r_{\rm{E}}}}}} \right)\)
- Nur im homogenen Bereich des Gravitationsfeldes kann die Arbeit mit \(\Delta {W_{{\rm{Hub}}}} = m \cdot g \cdot \Delta h\) berechnet werden.
- Um einen Körper von der Erdoberfläche bis zu einem Abstand \(r\) vom Erdmittelpunkt zu bewegen, muss die Arbeit \(\Delta W=G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{\rm{A}}}}} - \frac{1}{{{r_{\rm{E}}}}}} \right)\)
Gleichmäßig verzögerte Bewegung
- Ein Abbremsen, physikalisch eine Verzögerung, ist eine beschleunigte Bewegung mit negativer Beschleunigung, also \(a<0\).
- Das Zeit-Geschwindigkeit-Gesetz der gleichmäßig verzögerten Bewegung ist \(v = a \cdot t + {v_0}\)
- Das Zeit-Ort-Gesetz der gleichmäßig verzögerten Bewegung ist \(s = \frac{1}{2} \cdot a \cdot t^2 + {v_0}\cdot t\)
- Ein Abbremsen, physikalisch eine Verzögerung, ist eine beschleunigte Bewegung mit negativer Beschleunigung, also \(a<0\).
- Das Zeit-Geschwindigkeit-Gesetz der gleichmäßig verzögerten Bewegung ist \(v = a \cdot t + {v_0}\)
- Das Zeit-Ort-Gesetz der gleichmäßig verzögerten Bewegung ist \(s = \frac{1}{2} \cdot a \cdot t^2 + {v_0}\cdot t\)
Fundamentale und abgeleitete Kräfte
- Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
- Fundemantale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
- Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.
- Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
- Fundemantale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
- Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.
Beschreibung von Kräften
Sowohl die verformende als auch die beschleunigende Wirkung einer Kraft hängen von
- dem Betrag (Stärke)
- der Richtung und
- dem Angriffspunkt
der Kraft ab.
Aus diesem Grund beschreiben wir Kräfte durch Pfeile.
- Die Länge des Pfeils beschreibt den Betrag (Stärke) der Kraft.
- Die Richtung des Pfeils beschreibt die Richtung der Kraft.
- Der Fuß- oder Startpunkt des Pfeils (und nicht die Spitze!) beschreibt den Angriffspunkt der Kraft.
Sowohl die verformende als auch die beschleunigende Wirkung einer Kraft hängen von
- dem Betrag (Stärke)
- der Richtung und
- dem Angriffspunkt
der Kraft ab.
Aus diesem Grund beschreiben wir Kräfte durch Pfeile.
- Die Länge des Pfeils beschreibt den Betrag (Stärke) der Kraft.
- Die Richtung des Pfeils beschreibt die Richtung der Kraft.
- Der Fuß- oder Startpunkt des Pfeils (und nicht die Spitze!) beschreibt den Angriffspunkt der Kraft.
Gleichgewicht von Kräften (Einführung)
- Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
- Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null.
- Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.
- Zwei oder mehr Kräfte können sich unter bestimmten Bedingungen ausgleichen.
- Zwei Kräfte, die an einem Körper angreifen, sind im Kräftegleichgewicht, wenn sie den gleichen Betrag und die gleiche Wirkungslinie haben, aber in entgegengesetzte Richtungen wirken. Die resultierende Kraft ist dann null.
- Befindet sich ein Körper im Zustand der Ruhe (v=0) oder der gleichförmigen Bewegung (v=konstant), so ist die resultierende Kraft null.
Kosmische Geschwindigkeiten
Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um
- einen Satelliten in eine stabile Umlaufbahn zu bringen
- Menschen zu anderen Himmelskörpern zu befördern
- mit einer Sonde unser Sonnensystem verlassen zu können.
Mit Hilfe der drei kosmischen Geschwindigkeiten kann man abschätzen, welche Endgeschwindigkeiten Raketen besitzen müssen, um
- einen Satelliten in eine stabile Umlaufbahn zu bringen
- Menschen zu anderen Himmelskörpern zu befördern
- mit einer Sonde unser Sonnensystem verlassen zu können.