Direkt zum Inhalt
Suchergebnisse 31 - 60 von 103

Astronomische Koordinatensysteme

Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben

Big Bang Theory Effekt

Grundwissen
Grundwissen

Mondphasen

Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben

Mondfinsternis

Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben

Sonnenfinsternis

Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben

Bahnen im Gravitationsfeld

Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass \(F_{\rm{G}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben

Astronomische Daten unseres Sonnensystems

Grundwissen

  • Zentrale Astronomische Daten wie Bahnradius, Masse, Radius und Fallbeschleunigung von den Planeten unseres Sonnensystems

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Astronomische Daten wie Bahnradius, Masse, Radius und Fallbeschleunigung von den Planeten unseres Sonnensystems

Zum Artikel Zu den Aufgaben

Periodentafel der Elemente

Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben

Scheinbare Sternhelligkeit

Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel
Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel Zu den Aufgaben

Masse-Leuchtkraft-Beziehung

Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben

Hauptreihenstadium

Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben

Sterngeburt

Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel
Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Linearer Potentialtopf

Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben

Entfernungsbestimmung mit Cepheiden

Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Cepheiden sind Pulsationsveränderliche - ihre Leuchtkraft bzw. Helligkeit verändert sich streng periodisch.
  • Die Helligkeit hängt bei Cephiden mit der Länge ihrer Periode zusammen (Perioden-Leuchtkraft-Beziehung)
  • Cepheiden dienen zur Entfernungsmessung im Kosmos: aus der Beobachtung der Periodendauer kann man direkt auf die absolute Helligkeit schließen. Durch die Messung der relativen Helligkeit dann mit dem Entfernungsmodul die Entfernung berechnen werden.

Zum Artikel Zu den Aufgaben

HUBBLE-Gesetz

Grundwissen

  • Galaxien entfernen sich um so schneller von uns, je weiter die Galaxien von uns weg sind.
  • Der HUBBLE-Parameter gibt die aktuelle Expansionsrate des Universums an und beträgt aktuell etwa \(H_0=70\,\rm{\frac{km}{s\cdot Mpc}}\).
  • Die Expansionsrate des Universums hat aber im Laufe der Zeit zugenommen, sodass die lineare Beziehung  \(z\cdot c=H_0\cdot D\) zwischen Rotverschiebung und Entfernung nur für Rotverschiebungen bis \(z\approx 0{,}1\) gilt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Galaxien entfernen sich um so schneller von uns, je weiter die Galaxien von uns weg sind.
  • Der HUBBLE-Parameter gibt die aktuelle Expansionsrate des Universums an und beträgt aktuell etwa \(H_0=70\,\rm{\frac{km}{s\cdot Mpc}}\).
  • Die Expansionsrate des Universums hat aber im Laufe der Zeit zugenommen, sodass die lineare Beziehung  \(z\cdot c=H_0\cdot D\) zwischen Rotverschiebung und Entfernung nur für Rotverschiebungen bis \(z\approx 0{,}1\) gilt.

Zum Artikel Zu den Aufgaben

Kraftwärmekopplung

Grundwissen
Grundwissen

Gigantische RYDBERG-Moleküle - Von der Theorie zum Experiment

Grundwissen
Grundwissen

Moleküle in Action - Drehbuch für einen Film der Extreme

Grundwissen
Grundwissen

Das Zusammenspiel von Kosmischer Inflation und String-Theorie

Grundwissen
Grundwissen

Ein Gespräch über Quantenphysik

Grundwissen
Grundwissen

Absolute Sternhelligkeit

Grundwissen

  • Der Abstand eines Sternes von der Erde hat Einfluss auf seine beobachtete Helligkeit.
  • Die absolute Helligkeit \(M\) gibt an, wie hell ein Stern im Normabstand von \(10\,\rm{pc}\) erscheinen würde.
  • Der Entfernungsmodul gibt die Differenz von relativer und absoluter Helligkeit an: \(m - M = 5 \cdot \lg \left( {\frac{r}{{10\,\rm{pc}}}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Abstand eines Sternes von der Erde hat Einfluss auf seine beobachtete Helligkeit.
  • Die absolute Helligkeit \(M\) gibt an, wie hell ein Stern im Normabstand von \(10\,\rm{pc}\) erscheinen würde.
  • Der Entfernungsmodul gibt die Differenz von relativer und absoluter Helligkeit an: \(m - M = 5 \cdot \lg \left( {\frac{r}{{10\,\rm{pc}}}} \right)\)

Zum Artikel Zu den Aufgaben

Solarkonstante und Strahlungsleistung

Grundwissen

  • Der Mittelwert für die Solarkonstante \({S_0}\) bzw. \({E_0}\)  ist \({S_0} =E_0=1361\,\frac{{\rm{W}}}{{{{\rm{m}}^2}}}\).
  • Die Strahlungsleistung der Sonne beträgt etwa \(L=3{,}84\cdot 10^{26}\,\rm{W}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Mittelwert für die Solarkonstante \({S_0}\) bzw. \({E_0}\)  ist \({S_0} =E_0=1361\,\frac{{\rm{W}}}{{{{\rm{m}}^2}}}\).
  • Die Strahlungsleistung der Sonne beträgt etwa \(L=3{,}84\cdot 10^{26}\,\rm{W}\).

Zum Artikel Zu den Aufgaben

Charakteristische Strahlung

Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im kontinuierlichen RÖNTGEN-Spektrum können charakteristische Linien identifiziert werden, die sog. charakteristische Strahlung.
  • Ursache sind Übergänge von Elektronen zwischen spezifischen energetischen Elektronenschalen (K-Schale, L-Schale, M-Schale,...).
  • Die Kα-Linie ist in charakteristischen Spektren besonders stark ausgeprägt und die Lage der Linie im kontinuierlichen Spektrum stoffspezifisch.

Zum Artikel Zu den Aufgaben

Energiezustände von Atomen

Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel
Grundwissen

  • Atome können nur Zustände mit ganz bestimmten, diskreten Energiezuständen annehmen.
  • Entsprechend haben die von einem Atom ausgesendeten Photonen jeweils genau die Energie, die zwischen zwei solchen diskreten Energieniveaus des Atoms liegt.
  • Um ein Atom anzuregen, benötigt es ebenfalls exakt einen solchen "passenden" Energiebetrag.
  • Das Auftreten von Linienspektren kann durch diskrete Energieniveaus erklärt werden.

Zum Artikel Zu den Aufgaben

Spektralklassen

Grundwissen

  • Mittels Spektralanalyse erhält man das charakteristische Spektrum eines Sterns.
  • Aus Eigenschaften des Spektrums (Strahlungsmaximum, Absorptionslinien) kann man Rückschlüsse auf Eigenschaften des Sterns (z.B. die Oberflächentemperatur) ziehen.
  • Zur Klassifizierung werden sog. Spektralklassen genutzt. Die sieben Grundtypen werden mit O, B, A, F, G, K und M bezeichnet.

Zum Artikel
Grundwissen

  • Mittels Spektralanalyse erhält man das charakteristische Spektrum eines Sterns.
  • Aus Eigenschaften des Spektrums (Strahlungsmaximum, Absorptionslinien) kann man Rückschlüsse auf Eigenschaften des Sterns (z.B. die Oberflächentemperatur) ziehen.
  • Zur Klassifizierung werden sog. Spektralklassen genutzt. Die sieben Grundtypen werden mit O, B, A, F, G, K und M bezeichnet.

Zum Artikel Zu den Aufgaben

Jahreszeiten

Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben