Direkt zum Inhalt
Suchergebnisse 1 - 30 von 70

Orientierung mit Hilfe des Polarsterns (Nordstern)

Grundwissen

  • Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
  • Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
  • Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.

Zum Artikel Zu den Aufgaben

Spektren

Grundwissen

  • Man unterscheidet je nach Art ihrer Entstehung zwischen Emissions- und Absorptionsspektrum.
  • Bei kontinuierlichen Spektren wie von einer Glühlampe gehen die einzelnen Farben im Spektrum fließend ineinander über.
  • Diskrete Emissionsspektren (Linienspektren) bestehen aus einzelnen, voneinander getrennten dünnen Linien. Die Spektrallinien sind charakteristisch für ein Atom bzw. Molekül.
  • Mithilfe von Spektren können Rückschlüsse auf Eigenschaften eines Atoms gezogen werden.

Zum Artikel
Grundwissen

  • Man unterscheidet je nach Art ihrer Entstehung zwischen Emissions- und Absorptionsspektrum.
  • Bei kontinuierlichen Spektren wie von einer Glühlampe gehen die einzelnen Farben im Spektrum fließend ineinander über.
  • Diskrete Emissionsspektren (Linienspektren) bestehen aus einzelnen, voneinander getrennten dünnen Linien. Die Spektrallinien sind charakteristisch für ein Atom bzw. Molekül.
  • Mithilfe von Spektren können Rückschlüsse auf Eigenschaften eines Atoms gezogen werden.

Zum Artikel Zu den Aufgaben

Entwicklung schwerer Sterne

Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben

Dunkle Materie und Dunkle Energie

Grundwissen

  • Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
  • 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
  • 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.

Zum Artikel
Grundwissen

  • Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
  • 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
  • 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.

Zum Artikel Zu den Aufgaben

Kosmologie und Standardmodell

Grundwissen

  • Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
  • Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.

Zum Artikel
Grundwissen

  • Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
  • Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.

Zum Artikel Zu den Aufgaben

Energie im Gravitationsfeld

Grundwissen

  • Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
  • Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
  • Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
  • Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
  • Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
  • Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
  • Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)

Zum Artikel Zu den Aufgaben

HERTZSPRUNG-RUSSELL-Diagramm

Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben

Atommodell von BOHR

Grundwissen

  • BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
  • Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!

Zum Artikel Zu den Aufgaben
Grundwissen

  • BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
  • Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!

Zum Artikel Zu den Aufgaben

Gesetz von MOSELEY

Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
  • Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)

Zum Artikel Zu den Aufgaben

Bestimmung der AVOGADRO-Konstante durch RÖNTGEN-Spektroskopie

Grundwissen

  • Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
  • Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
  • Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
  • Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
  • Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.

Zum Artikel Zu den Aufgaben

Monat

Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel
Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel Zu den Aufgaben

Kosmische Hintergrundstrahlung

Grundwissen

  • Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
  • Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
  • Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie. 

Zum Artikel
Grundwissen

  • Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
  • Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
  • Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie. 

Zum Artikel Zu den Aufgaben

Atomare Größen

Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
  • Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
  • \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
  • Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).

Zum Artikel Zu den Aufgaben

Himmelskugel

Grundwissen

  • Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
  • Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
  • Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
  • Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
  • Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)

Zum Artikel Zu den Aufgaben

Bremsstrahlung

Grundwissen

  • In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
  • Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
  • Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
  • Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
  • Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.

Zum Artikel Zu den Aufgaben

Lauf der Gestirne

Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben

Sonnenspektrum

Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (Fraunhoferlininen), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (Fraunhoferlininen), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben

Astronomische Koordinatensysteme

Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben

Mondphasen

Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Mondphasen entstehen dadurch, dass sich der Mond um die Erde dreht und je nach Position ein bestimmter Teil seiner Oberfläche Licht in Richtung der Erde reflektiert.
  • Ein Mondphasenzyklus dauert in etwa 29,5 Tage und beinhaltet Neumond, zunehmenden Halbmond, Vollmond und abnehmenden Halbmond.

Zum Artikel Zu den Aufgaben

Mondfinsternis

Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Mondfinsternis steht die Erde zwischen Sonne und Mond
  • Bei einer Mondfinsternis ist der Mond also im Schatten der Erde

Zum Artikel Zu den Aufgaben

Sonnenfinsternis

Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer Sonnenfinsternis befindet sich der Mond zwischen Sonne und Erde
  • Man unterscheidet meist zwischen totaler und partieller Sonnenfinsternis
  • Im Kernschatten des Mondes befindet sich immer nur ein kleiner Teil der Erdoberfläche

Zum Artikel Zu den Aufgaben

Bahnen im Gravitationsfeld

Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass das \(F_{\rm{Z}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schießt man auf der Erde von einem hohen Turm einen Körper parallel zur Erdoberfläche ab, so gibt es je nach Abschussgeschwindigkeit \(v\) vier mögliche Bahnkurven.
  • Für kleine \(v\) trifft der Körper die Erde.
  • Wenn \(v\) so groß ist, dass das \(F_{\rm{Z}}=F_{\rm{Z}}\) gilt, ergibt sich eine Kreisbahn.
  • Bei größerem \(v\) ergeben sich zunächst Ellipsenbahnen und bei \(v>v_{\rm{Flucht}}\) Hyperbelbahnen und der Körper entfernt sich.

Zum Artikel Zu den Aufgaben

Astronomische Daten unseres Sonnensystems

Grundwissen

  • Zentrale Astronomische Daten wie Bahnradius, Masse, Radius und Fallbeschleunigung von den Planeten unseres Sonnensystems

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zentrale Astronomische Daten wie Bahnradius, Masse, Radius und Fallbeschleunigung von den Planeten unseres Sonnensystems

Zum Artikel Zu den Aufgaben

Periodentafel der Elemente

Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben

Scheinbare Sternhelligkeit

Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel
Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel Zu den Aufgaben

Masse-Leuchtkraft-Beziehung

Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben

Hauptreihenstadium

Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(\t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(\t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben

Sterngeburt

Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel
Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Linearer Potentialtopf

Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Modell des eindimensionalen linearen unendlichen Potentialtopfs ist die potentielle Energie eines Teilchens im Topf Null, an den Rändern unendlich groß.
  • Die Aufenthaltswahrscheinlichkeit des Teilchens am Topfrand ist Null. Die Eigenschwingungen des Teilchens im Potentialtopf sind daher analog zu stehenden Seilwellen an festen Enden.
  • Mit der Beziehung \(\lambda=\frac{h}{p}\) ergibt sich die Gesamtenergie des Teilchens im Potentialtopf zu \({E_{\rm{ges}}} = \frac{{{h^2}}}{{8 \cdot m \cdot {a^2}}} \cdot {n^2}\)
  • Mit \(n\in \left\{ {1\;;\;2\;;\;3\;;\;...} \right\}\) erhält man die verschiedenen Energieniveaus des Elektrons im Potentialtopf.

Zum Artikel Zu den Aufgaben