Direkt zum Inhalt
Suchergebnisse 61 - 90 von 150

Reihenschaltung von Widerständen

Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Gesamtwiderstand \(R_{12}\) zweier in Reihe geschalteter Widerstände \(R_1\) und \(R_2\) gilt: \(R_{12}=R_1 + R_2\)
  •  Der Gesamtwiderstands einer Reihenschaltung ist stets größer als der größte Einzelwiderstand.

Zum Artikel Zu den Aufgaben

Elektrische Arbeit und Leistung

Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die elektrische Arbeit berechnest du mittels \(W_{\rm{el}}=U\cdot I\cdot t\)
  • Typische Einheiten sind \(1\,\rm{J}\) (Joule) oder \(1\,\rm{kWh}\) (Kilowattstunde)
  • Für die elektrische Leistung gilt \(P_{\rm{el}}=U\cdot I = I^2\cdot R\)

Zum Artikel Zu den Aufgaben

Elektrisches Feld

Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn in einem Raum elektrische Kraftwirkungen auftreten, so herrscht in diesem Raum ein elektrisches Feld.
  • Ein elektrisches Feld wird durch elektrische Ladungen erzeugt. Das Feld ist Vermittler für elektrische Kräfte.

Zum Artikel Zu den Aufgaben

Energie des magnetischen Feldes

Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Magnetfeld einer Spule ist Energie gespeichert.
  • Die magnetische Feldenergie einer Spule beträgt \({E_{\rm{mag}}}\left( t \right) = {\textstyle{1 \over 2}} \cdot L \cdot {I^2}\left( t \right)\)

Zum Artikel Zu den Aufgaben

LORENTZ-Kraft

Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegen sich Ladungsträger senkrecht oder schräg zu einem Magnetfeld, so wirkt eine Lorentzkraft auf die Ladungsträger.
  • Die Kraftrichtung kann mit der Drei-Finger-Regel bestimmt werden.
  • Die Lorentzkraft wirkt auch auf freie Ladungsträger.

Zum Artikel Zu den Aufgaben

Geladene Teilchen im magnetischen Feld (schräger Eintritt)

Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Tritt ein geladenes Teilchen schräg zu den Feldlinien in ein homogenes Magnetisches Feld ein, so durchläuft es im B-Feld eine Schraubenlinie.
  • Für den Radius der Schraubenlinie gilt \(r = \frac{{m \cdot v}}{{q \cdot B}} \cdot \sin \left( \alpha  \right)\)
  • Die Ganghöhe beträgt \(h = \frac{{2 \cdot \pi  \cdot m \cdot v}}{{q \cdot B}} \cdot \cos \left( \alpha  \right)\)

Zum Artikel Zu den Aufgaben

Selbstinduktion und Induktivität

Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben
Grundwissen

  • Selbstinduktion ist die Induktionswirkung eines Stromes auf seinen eigenen Leiterkreis
  • Die Induktionsspannung \(U_{\rm{i}}\) ist proportional zur Änderungsrate \(\frac{dI}{dt}\)
  • Es gilt \(U_{\rm{i}}=-L\cdot \frac{dI}{dt}\), wobei \(L\) die sog. Induktivität ist

Zum Artikel Zu den Aufgaben

Transformator

Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Transformatoren arbeiten i.d.R. immer mit Wechselspannungen und basieren auf Induktion.
  • Transformatoren besitzen eine Primär- und eine Sekundärseite.
  • Man unterscheidet zwischen unbelastetem und belastetem Transformator.

Zum Artikel Zu den Aufgaben

Energieübertragung durch Hochspannung

Grundwissen

Zum Transport von elektrischer Energie über große Entfernungen werden Hochspannungsleitung genutzt. 

Durch den Nutzen hoher Spannungen kann der in den Leitung fließende Strom klein gehalten werden.

Hohe Spannungen reduzieren die Verlustleistung auf dem Transportweg.

Zum Artikel Zu den Aufgaben
Grundwissen

Zum Transport von elektrischer Energie über große Entfernungen werden Hochspannungsleitung genutzt. 

Durch den Nutzen hoher Spannungen kann der in den Leitung fließende Strom klein gehalten werden.

Hohe Spannungen reduzieren die Verlustleistung auf dem Transportweg.

Zum Artikel Zu den Aufgaben

Glühelektrischer oder EDISON-Effekt

Grundwissen

  • Aus einer beheizten Glühwendel können Elektronen aus dem Metall austreten
  • Je größer die Heizspannung ist, desto mehr und desto schnellere Elektronen treten aus dem Metall aus

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus einer beheizten Glühwendel können Elektronen aus dem Metall austreten
  • Je größer die Heizspannung ist, desto mehr und desto schnellere Elektronen treten aus dem Metall aus

Zum Artikel Zu den Aufgaben

Überlagerung elektrischer Felder

Grundwissen

  • Das E-Feld einer Ladungsanordnung ergibt sich aus der Überlagerung der Felder der Einzelladungen.
  • In jedem Raumpunkt werden die Feldstärkevektoren der Einzelfelder vektoriell addiert.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das E-Feld einer Ladungsanordnung ergibt sich aus der Überlagerung der Felder der Einzelladungen.
  • In jedem Raumpunkt werden die Feldstärkevektoren der Einzelfelder vektoriell addiert.

Zum Artikel Zu den Aufgaben

Induktion und LORENTZ-Kraft

Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ändert sich die von Magnetfeld durchsetzte Fläche einer Spule, so tritt Induktion auf
  • Eine Flächenänderung kann auch durch Rotation der Spule erreicht werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ändert sich die von Magnetfeld durchsetzte Fläche einer Spule, so tritt Induktion auf
  • Eine Flächenänderung kann auch durch Rotation der Spule erreicht werden

Zum Artikel Zu den Aufgaben

Fadenstrahlrohr

Grundwissen

  • Im Fadenstrahlrohr werden Elektronen in einer Elektronenkanone beschleunigt und treten senkrecht zu den Feldlinien in das homogene B-Feld eines Helmholtzspulenpaares.
  • Die Elektronen bewegen sich im homogenen B-Feld auf einer Kreisbahn mit \(r = \frac{{m_e \cdot v_0}}{{e \cdot B}}\)
  • Mit dem Fadenstrahlrohr kann die spezifische Elektronenladung \(\frac{e}{m_e}\) bestimmt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Fadenstrahlrohr werden Elektronen in einer Elektronenkanone beschleunigt und treten senkrecht zu den Feldlinien in das homogene B-Feld eines Helmholtzspulenpaares.
  • Die Elektronen bewegen sich im homogenen B-Feld auf einer Kreisbahn mit \(r = \frac{{m_e \cdot v_0}}{{e \cdot B}}\)
  • Mit dem Fadenstrahlrohr kann die spezifische Elektronenladung \(\frac{e}{m_e}\) bestimmt werden.

Zum Artikel Zu den Aufgaben

WIENscher Geschwindigkeitsfilter

Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein WIENscher Geschwindigkeitsfilter besteht aus einem homogenen elektrischen Feld und einem homogenen magnetischem Feld, die senkrecht zueinander stehen. Die Elektronen treten senkrecht zu beiden Feldern ein.
  • Nur wenn ein Elektron die passende Geschwindigkeit \(v=\frac{E}{B}\) besitzt, sind die elektrische Kraft und die LORENTZ-Kraft auf das Elektronen gleich groß und es passiert den Geschwindigkeitsfilter.

Zum Artikel Zu den Aufgaben

Absolute Sternhelligkeit

Grundwissen

  • Der Abstand eines Sternes von der Erde hat Einfluss auf seine beobachtete Helligkeit.
  • Die absolute Helligkeit \(M\) gibt an, wie hell ein Stern im Normabstand von \(10\,\rm{pc}\) erscheinen würde.
  • Der Entfernungsmodul gibt die Differenz von relativer und absoluter Helligkeit an: \(m - M = 5 \cdot \lg \left( {\frac{r}{{10\,\rm{pc}}}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Abstand eines Sternes von der Erde hat Einfluss auf seine beobachtete Helligkeit.
  • Die absolute Helligkeit \(M\) gibt an, wie hell ein Stern im Normabstand von \(10\,\rm{pc}\) erscheinen würde.
  • Der Entfernungsmodul gibt die Differenz von relativer und absoluter Helligkeit an: \(m - M = 5 \cdot \lg \left( {\frac{r}{{10\,\rm{pc}}}} \right)\)

Zum Artikel Zu den Aufgaben

Solarkonstante und Strahlungsleistung

Grundwissen

  • Der Mittelwert für die Solarkonstante \({S_0}\) bzw. \({E_0}\)  ist \({S_0} =E_0=1361\,\frac{{\rm{W}}}{{{{\rm{m}}^2}}}\).
  • Die Strahlungsleistung der Sonne beträgt etwa \(L=3{,}84\cdot 10^{26}\,\rm{W}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Mittelwert für die Solarkonstante \({S_0}\) bzw. \({E_0}\)  ist \({S_0} =E_0=1361\,\frac{{\rm{W}}}{{{{\rm{m}}^2}}}\).
  • Die Strahlungsleistung der Sonne beträgt etwa \(L=3{,}84\cdot 10^{26}\,\rm{W}\).

Zum Artikel Zu den Aufgaben

Spektralklassen

Grundwissen

  • Mittels Spektralanalyse erhält man das charakteristische Spektrum eines Sterns.
  • Aus Eigenschaften des Spektrums (Strahlungsmaximum, Absorptionslinien) kann man Rückschlüsse auf Eigenschaften des Sterns (z.B. die Oberflächentemperatur) ziehen.
  • Zur Klassifizierung werden sog. Spektralklassen genutzt. Die sieben Grundtypen werden mit O, B, A, F, G, K und M bezeichnet.

Zum Artikel
Grundwissen

  • Mittels Spektralanalyse erhält man das charakteristische Spektrum eines Sterns.
  • Aus Eigenschaften des Spektrums (Strahlungsmaximum, Absorptionslinien) kann man Rückschlüsse auf Eigenschaften des Sterns (z.B. die Oberflächentemperatur) ziehen.
  • Zur Klassifizierung werden sog. Spektralklassen genutzt. Die sieben Grundtypen werden mit O, B, A, F, G, K und M bezeichnet.

Zum Artikel Zu den Aufgaben

Ein- und Ausschalten von RL-Kreisen

Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben
Grundwissen

  • Insbesondere bei Ein- und Ausschaltvorgängen wird die Selbstinduktion deutlich
  • Strom- und Spannungsverlauf können mathematisch mittels \(e\)-Funktion exakt beschrieben werden

Zum Artikel Zu den Aufgaben

Modell der Elementarmagnete

Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel
Grundwissen

  • Modellhaft können wir ein Magneten immer weiter in Magnete zerteilen, bis wir kleinste, unteilbare Elementarmagnete haben. Auch diese haben jeweils Nord- und Südpol.
  • Mit Hilfe des Modells der Elementarmagnete kannst du viele Phänomene erklären: das Magnetisieren von Eisen, das  Entmagnetisieren durch Erhitzen und das Entmagnetisieren durch Erschütterung.

Zum Artikel Zu den Aufgaben

Jahreszeiten

Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Neigung der Erdachse sorgt für die Jahreszeiten
  • Im Sommer fällt das Sonnenlicht mittags steiler auf die Erdoberfläche, im Winter flacher
  • Einstrahlwinkel und Tageslängen beeinflussen die Erwärmung

Zum Artikel Zu den Aufgaben

Erstes KEPLERsches Gesetz

Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel
Grundwissen

  • Die Planeten bewegen sich auf elliptischen Bahnen, in deren einem Brennpunkt die Sonne steht.
  • Den Bahnpunkt mit dem geringsten Abstand zur Sonne bezeichnet man als Perihel, den Bahnpunkt mit dem größten Abstand zur Sonne als Aphel.
  • Die Erdbahn hat nur eine sehr geringe Exzentrizität.

Zum Artikel Zu den Aufgaben

Drittes KEPLERsches Gesetz

Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Quadrate (zweite Potenzen) der Umlaufzeiten zweier Planeten um das gleiche Zentralgestirn verhalten sich wie die Kuben (dritte Potenzen) der großen Bahnhalbachsen.
  • Für alle Planeten, die um das gleiche Zentralgestirn kreisen, haben die Quotienten aus dem Quadrat der Umlaufzeit und der dritten Potenz der großen Bahnhalbachse den selben Wert \(C\). Dabei muss die Masse des Zentralgestirns deutlich größer sein, als die Masse der umlaufenden Körper.

Zum Artikel Zu den Aufgaben

Entfernungsbestimmung in Planetensystemen

Grundwissen

  • Aus den Umlaufzeiten zweier Planeten und der großen Halbachse eines Planeten, kann die Halbachse des anderer Planeten berechnet werden.
  • Dabei gilt \(a_{2}=a_{1} \cdot \sqrt[3]{\frac{{T_2}^2}{{T_1}^2}}\)

Zum Artikel
Grundwissen

  • Aus den Umlaufzeiten zweier Planeten und der großen Halbachse eines Planeten, kann die Halbachse des anderer Planeten berechnet werden.
  • Dabei gilt \(a_{2}=a_{1} \cdot \sqrt[3]{\frac{{T_2}^2}{{T_1}^2}}\)

Zum Artikel Zu den Aufgaben

Siderische und synodische Umlaufzeit

Grundwissen

  • In der Konjunktion befindet sich ein Planet, wenn er sich von der Erde aus gesehen an der gleichen Stelle des Himmels befindet wie die Sonne.
  • Die siderische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet für einen vollen Umlauf vor dem Sternenhintergrund benötigt.
  • Die synodische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet von (oberen) Konjunktionsstellung zur nächsten benötigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Konjunktion befindet sich ein Planet, wenn er sich von der Erde aus gesehen an der gleichen Stelle des Himmels befindet wie die Sonne.
  • Die siderische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet für einen vollen Umlauf vor dem Sternenhintergrund benötigt.
  • Die synodische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet von (oberen) Konjunktionsstellung zur nächsten benötigt.

Zum Artikel Zu den Aufgaben

Energie der Sonne

Grundwissen

  • Aufgrund der von ihre ausgehenden Strahlung verliert die Sonne pro Sekunde eine Masse von \(M=4{,}28\cdot 10^{9}\,\rm{kg}\).
  • Im Inneren der Sonne findet Kernfusion statt, nur so lässt sich ihre Lebensdauer erklären.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aufgrund der von ihre ausgehenden Strahlung verliert die Sonne pro Sekunde eine Masse von \(M=4{,}28\cdot 10^{9}\,\rm{kg}\).
  • Im Inneren der Sonne findet Kernfusion statt, nur so lässt sich ihre Lebensdauer erklären.

Zum Artikel Zu den Aufgaben

Zweites KEPLERsches Gesetz

Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben

Himmelskörper

Grundwissen

Sonne, Mond und Sterne - die Astronomie beschäftigt sich mit dem Weltraum, Himmelskörpern und deren Eigenschaften. Neben scheinbar unendlichen Weiten und allerlei spektakulären Phänomen wie schwarzen Löchern hält das All für PhysikerInnen einige Überraschungen bereit.
Hier erhältst du einen Überblick, über die wichtigsten Objekte im Weltall und ihre Besonderheiten.

Zum Artikel Zu den Aufgaben
Grundwissen

Sonne, Mond und Sterne - die Astronomie beschäftigt sich mit dem Weltraum, Himmelskörpern und deren Eigenschaften. Neben scheinbar unendlichen Weiten und allerlei spektakulären Phänomen wie schwarzen Löchern hält das All für PhysikerInnen einige Überraschungen bereit.
Hier erhältst du einen Überblick, über die wichtigsten Objekte im Weltall und ihre Besonderheiten.

Zum Artikel Zu den Aufgaben

Jährliche Sternbewegung

Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel
Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel Zu den Aufgaben

Entwicklung der Sonne

Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel
Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel Zu den Aufgaben

Ausdehnung des Kosmos

Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel
Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel Zu den Aufgaben