Direkt zum Inhalt
Suchergebnisse 61 - 90 von 94

Siderische und synodische Umlaufzeit

Grundwissen

  • In der Konjunktion befindet sich ein Planet, wenn er sich von der Erde aus gesehen an der gleichen Stelle des Himmels befindet wie die Sonne.
  • Die siderische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet für einen vollen Umlauf vor dem Sternenhintergrund benötigt.
  • Die synodische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet von (oberen) Konjunktionsstellung zur nächsten benötigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In der Konjunktion befindet sich ein Planet, wenn er sich von der Erde aus gesehen an der gleichen Stelle des Himmels befindet wie die Sonne.
  • Die siderische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet für einen vollen Umlauf vor dem Sternenhintergrund benötigt.
  • Die synodische Umlaufzeit eines Planeten ist die Zeitspanne, die der Planet von (oberen) Konjunktionsstellung zur nächsten benötigt.

Zum Artikel Zu den Aufgaben

Energie der Sonne

Grundwissen

  • Aufgrund der von ihre ausgehenden Strahlung verliert die Sonne pro Sekunde eine Masse von \(M=4{,}28\cdot 10^{9}\,\rm{kg}\).
  • Im Inneren der Sonne findet Kernfusion statt, nur so lässt sich ihre Lebensdauer erklären.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aufgrund der von ihre ausgehenden Strahlung verliert die Sonne pro Sekunde eine Masse von \(M=4{,}28\cdot 10^{9}\,\rm{kg}\).
  • Im Inneren der Sonne findet Kernfusion statt, nur so lässt sich ihre Lebensdauer erklären.

Zum Artikel Zu den Aufgaben

Zweites KEPLERsches Gesetz

Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein von der Sonne zum Planeten gezogener Fahrstrahl überstreicht in gleichen Zeiten gleich große Flächen.
  • Die Geschwindigkeit eines Planeten ändert sich auf seiner Bahn um die Sonne: im Perihel ist er am schnellsten, im Aphel am langsamsten.

Zum Artikel Zu den Aufgaben

Himmelskörper

Grundwissen

Sonne, Mond und Sterne - die Astronomie beschäftigt sich mit dem Weltraum, Himmelskörpern und deren Eigenschaften. Neben scheinbar unendlichen Weiten und allerlei spektakulären Phänomen wie schwarzen Löchern hält das All für PhysikerInnen einige Überraschungen bereit.
Hier erhältst du einen Überblick, über die wichtigsten Objekte im Weltall und ihre Besonderheiten.

Zum Artikel Zu den Aufgaben
Grundwissen

Sonne, Mond und Sterne - die Astronomie beschäftigt sich mit dem Weltraum, Himmelskörpern und deren Eigenschaften. Neben scheinbar unendlichen Weiten und allerlei spektakulären Phänomen wie schwarzen Löchern hält das All für PhysikerInnen einige Überraschungen bereit.
Hier erhältst du einen Überblick, über die wichtigsten Objekte im Weltall und ihre Besonderheiten.

Zum Artikel Zu den Aufgaben

Jährliche Sternbewegung

Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel
Grundwissen

  • Nahe Fixsterne scheinen im Laufe eines Jahres bei der Beobachtung von der Erde aus vor dem weit entfernten Sternenhintergrund etwas zu wandern.
  • Ursache dafür ist, dass sich die Erde im Laufe eines Jahres einmal um die Sonne bewegt.
  • Mithilfe der beobachteten jährlichen Parallaxe \(p\) kann die Entfernung relativ naher Sterne (mit einfachen Teleskopen vom Erdboden bis ca. \(100 \rm{pc} = 326\,\rm{Lj}\)) berechnet werden. Mit speziellen Raumsonden (z.B. Gaia) erhöht sich die Reichweite erheblich.

Zum Artikel Zu den Aufgaben

Entwicklung der Sonne

Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel
Grundwissen

  • Aktuell befindet sich die Sonne im Hauptreihenstadium und ist ein Gelber Zwerg.
  • Durch die Ständige Kernfusion im Inneren wandert die Sonne entlang der Hauptreihe im Hertzsprung-Russel-Diagramm.
  • In etwa 6 Milliarden Jahren wird die Sonne dann zu einem Roten Riesen bis sie schließlich als Weißer Zwerg endet.

Zum Artikel Zu den Aufgaben

Ausdehnung des Kosmos

Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel
Grundwissen

  • Das Universum als Ganzes dehnt sich gegenwärtig aus.
  • Dabei besteht ein Zusammenhang zwischen der Entfernung der Galaxien voneinander und ihrer "Fluchtgeschwindigkeit" voneinander.
  • Bei der Ausdehnung gibt es keinen ausgezeichneten Punkt, keinen Mittelpunkt.

Zum Artikel Zu den Aufgaben

Aufbau der Sonne

Grundwissen

  • Der Kern der Sonne stellt einen Fusionsreaktor dar, der letztendlich für die abgestrahlte Energie verantwortlich ist.
  •  Im Inneren der Sonne wird die Energie zunächst durch Strahlung (Strahlenzone), dann durch Konvektion (Konvektionszone) transportiert.
  • In der Photosphäre entsteht der kontinuierliche Teil der Sonnenstrahlung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Kern der Sonne stellt einen Fusionsreaktor dar, der letztendlich für die abgestrahlte Energie verantwortlich ist.
  •  Im Inneren der Sonne wird die Energie zunächst durch Strahlung (Strahlenzone), dann durch Konvektion (Konvektionszone) transportiert.
  • In der Photosphäre entsteht der kontinuierliche Teil der Sonnenstrahlung.

Zum Artikel Zu den Aufgaben

Konstruktionsstrahlen bei der Linsenabbildung

Grundwissen

  • Zur Konstruktion bei Linsenabbildungen nutzt man drei Hauptstrahlen: Parallelstrahl, Mittelpunktsstrahl und Brennpunktstrahl.
  • Mit den Konstruktionsstrahlen können sowohl Abbildungen an Sammellinsen als auch an Zerstreuungslinsen untersucht werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zur Konstruktion bei Linsenabbildungen nutzt man drei Hauptstrahlen: Parallelstrahl, Mittelpunktsstrahl und Brennpunktstrahl.
  • Mit den Konstruktionsstrahlen können sowohl Abbildungen an Sammellinsen als auch an Zerstreuungslinsen untersucht werden.

Zum Artikel Zu den Aufgaben

Schatten

Grundwissen

  • Den lichtfreien Bereich hinter einem Gegenstand nennt man Schatten.
  • Bei zwei oder mehr punktförmigen Lichtquellen unterscheidet man Kernschatten, er wird von keiner Lichtquelle beleuchtet, und Halbschatten, er wird nur von einem Teil der Lichtquellen beleuchtet.
  • Bei ausgedehnten Lichtquellen tritt ein unscharfer Übergangsschatten auf.
 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Den lichtfreien Bereich hinter einem Gegenstand nennt man Schatten.
  • Bei zwei oder mehr punktförmigen Lichtquellen unterscheidet man Kernschatten, er wird von keiner Lichtquelle beleuchtet, und Halbschatten, er wird nur von einem Teil der Lichtquellen beleuchtet.
  • Bei ausgedehnten Lichtquellen tritt ein unscharfer Übergangsschatten auf.
 

Zum Artikel Zu den Aufgaben

Lichtbündel und Lichtstrahlen

Grundwissen

  • Von Lichtquellen wie der Sonne oder einer Lampe gehen meist divergente (auseinanderlaufende) Lichtbündel aus.
  • Mithilfe von Blenden oder Spalten kannst du daraus (nahezu) parallele Lichtbündel erzeugen, die in unserer Vorstellung aus vielen einzelnen, sehr dünnen Lichtstrahlen bestehen.
  • Lichtstrahlen breiten sich in einem homogenen Medium, wie z.B. Luft, geradlinig aus.
  • Lichtstrahlen stören sich nicht gegenseitig in ihrer geradlinigen Ausbreitung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Von Lichtquellen wie der Sonne oder einer Lampe gehen meist divergente (auseinanderlaufende) Lichtbündel aus.
  • Mithilfe von Blenden oder Spalten kannst du daraus (nahezu) parallele Lichtbündel erzeugen, die in unserer Vorstellung aus vielen einzelnen, sehr dünnen Lichtstrahlen bestehen.
  • Lichtstrahlen breiten sich in einem homogenen Medium, wie z.B. Luft, geradlinig aus.
  • Lichtstrahlen stören sich nicht gegenseitig in ihrer geradlinigen Ausbreitung.

Zum Artikel Zu den Aufgaben

Additive Farbmischung

Grundwissen

  • Bei der additiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass zu vorhandenem Licht das Licht weiterer Spektralfarben hinzugefügt wird.
  • In der Praxis mischt man nur Licht der drei Spektralfarben "Rot", "Grün" und "Blau". Man spricht dann vom RGB-Farbraum und nennt die Spektralfarben "Rot", "Grün" und "Blau" die Grund- oder Primärfarben der additiven Farbmischung.
  • Mischt man das Licht dieser drei Grundfarben passend zusammen, so erhält man fast alle möglichen Farbeindrücke und auch den Farbeindruck "weiß".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der additiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass zu vorhandenem Licht das Licht weiterer Spektralfarben hinzugefügt wird.
  • In der Praxis mischt man nur Licht der drei Spektralfarben "Rot", "Grün" und "Blau". Man spricht dann vom RGB-Farbraum und nennt die Spektralfarben "Rot", "Grün" und "Blau" die Grund- oder Primärfarben der additiven Farbmischung.
  • Mischt man das Licht dieser drei Grundfarben passend zusammen, so erhält man fast alle möglichen Farbeindrücke und auch den Farbeindruck "weiß".

Zum Artikel Zu den Aufgaben

Subtraktive Farbmischung

Grundwissen

  • Bei der subtraktiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass aus vorhandenem Licht das Licht einzelner Spektralfarben herausgefiltert wird.
  • In der Praxis filtert man aus Licht, in dem alle Spektralfarben enthalten sind, getrennt voneinander Licht des "roten", des "grünen" und des "blauen" Spektralbereichs heraus. Die entsprechenden Farbfilter erscheinen uns in den Farben "Cyan", "Magenta" und "Gelb" ("Yellow"). Man spricht deshalb vom CMY-Farbraum.
  • Filtert man aus Sonnenlicht das Licht des "roten", des "grünen" und des "blauen" Spektralbereichs in unterschiedlichen Kombinationen und Filterstärken heraus, so erhält man fast alle möglichen Farbeindrücke bis hin zum Farbeindruck "schwarz".

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der subtraktiven Farbmischung entstehen unterschiedliche Farbeindrücke dadurch, dass aus vorhandenem Licht das Licht einzelner Spektralfarben herausgefiltert wird.
  • In der Praxis filtert man aus Licht, in dem alle Spektralfarben enthalten sind, getrennt voneinander Licht des "roten", des "grünen" und des "blauen" Spektralbereichs heraus. Die entsprechenden Farbfilter erscheinen uns in den Farben "Cyan", "Magenta" und "Gelb" ("Yellow"). Man spricht deshalb vom CMY-Farbraum.
  • Filtert man aus Sonnenlicht das Licht des "roten", des "grünen" und des "blauen" Spektralbereichs in unterschiedlichen Kombinationen und Filterstärken heraus, so erhält man fast alle möglichen Farbeindrücke bis hin zum Farbeindruck "schwarz".

Zum Artikel Zu den Aufgaben

Spektralfarben

Grundwissen

  • Weißes Licht lässt sich mithilfe eines Prismas in seine Spektralfarben zerlegen.
  • Als Spektralfarben werden meist die Regenbogenfarben Rot, Orange, Gelb, Grün, Blau, Indigo und Violett bezeichnet.
  • Spektralfarben lassen sich nicht weiter in andere Farben zerlegen. Es sind reine Farben.
  • Licht enthält oft auch nicht sichtbare Anteile - zum einen infrarotes Licht und zum anderen ultraviolettes Licht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Weißes Licht lässt sich mithilfe eines Prismas in seine Spektralfarben zerlegen.
  • Als Spektralfarben werden meist die Regenbogenfarben Rot, Orange, Gelb, Grün, Blau, Indigo und Violett bezeichnet.
  • Spektralfarben lassen sich nicht weiter in andere Farben zerlegen. Es sind reine Farben.
  • Licht enthält oft auch nicht sichtbare Anteile - zum einen infrarotes Licht und zum anderen ultraviolettes Licht.

Zum Artikel Zu den Aufgaben

Lochkamera

Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Bild bei einer Lochkamera steht auf dem Kopf und ist seitenverkehrt.
  • Wenn man das Loch vergrößert, wird das Bild zwar heller, dafür aber unschärfer.
  • Bildgröße \(B\) und Gegenstandsgröße \(G\) sowie Bildweite \(b\) und Gegenstandsweite \(g\) sind quotientengleich: \(\frac{B}{G}=\frac{b}{g}\).

Zum Artikel Zu den Aufgaben

Lichtgeschwindigkeit

Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ausbreitungsgeschwindigkeit von Licht nennt man Lichtgeschwindigkeit.
  • Die Lichtgeschwindigkeit im luftleeren Raum (Vakuum) beträgt \(299.792.458\,\rm{\frac{m}{s}}\). Das sind etwa \(300.000\,\rm{\frac{km}{s}}\)
  • In Formeln wird diese Lichtgeschwindigkeit häufig mit \(c\) bezeichnet.

Zum Artikel Zu den Aufgaben

Bildentstehung bei Linsenabbildungen

Grundwissen

  • Von Konvexlinsen erzeugte reelle Bilder (Voraussetzung \(g>f\)) sind höhen- und seitenverkehrt.
  • Bilder entstehen dabei punktweise! Bilder wandern niemals als Ganzes.

Zum Artikel
Grundwissen

  • Von Konvexlinsen erzeugte reelle Bilder (Voraussetzung \(g>f\)) sind höhen- und seitenverkehrt.
  • Bilder entstehen dabei punktweise! Bilder wandern niemals als Ganzes.

Zum Artikel Zu den Aufgaben

Bildeigenschaften bei Abbildungen

Grundwissen

  • Wenn \(g>f\) ist, entstehen bei Abbildung an Sammellinsen reelle, höhen- und seitenverkehrte Bilder.
  • Ist \(g>2\cdot f\), so sind Bilder an Sammellinsen kleiner als der Gegenstand. Gilt \(2\cdot f>g>f\), so sind die Bilder größer als der Gegenstand.
  • Wenn \(g<f\) ist, entstehen bei Abbildung an Sammellinsen virtuelle Bilder, die nicht auf dem Kopf stehen und größer als der Gegenstand sind.
  • Bei Abbildung an Zerstreuungslinsen entstehen immer virtuelle Bilder, die kleiner als der Gegenstand sind und nicht auf dem Kopf stehen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn \(g>f\) ist, entstehen bei Abbildung an Sammellinsen reelle, höhen- und seitenverkehrte Bilder.
  • Ist \(g>2\cdot f\), so sind Bilder an Sammellinsen kleiner als der Gegenstand. Gilt \(2\cdot f>g>f\), so sind die Bilder größer als der Gegenstand.
  • Wenn \(g<f\) ist, entstehen bei Abbildung an Sammellinsen virtuelle Bilder, die nicht auf dem Kopf stehen und größer als der Gegenstand sind.
  • Bei Abbildung an Zerstreuungslinsen entstehen immer virtuelle Bilder, die kleiner als der Gegenstand sind und nicht auf dem Kopf stehen.

Zum Artikel Zu den Aufgaben

Interferenz am Keil

Grundwissen

  • Auch bei der Reflexion an keilförmigen Anordnungen tritt Interferenz auf.
  • Mit einem Luftkeil kannst du die Dicke dünner Objekte, wie z.B. von einem Haar bestimmen.

Zum Artikel
Grundwissen

  • Auch bei der Reflexion an keilförmigen Anordnungen tritt Interferenz auf.
  • Mit einem Luftkeil kannst du die Dicke dünner Objekte, wie z.B. von einem Haar bestimmen.

Zum Artikel Zu den Aufgaben

Totalreflexion

Grundwissen

  • Beim Übergang zwischen zwei Medien wird ein Teil des Lichtes reflektiert.
  • Nur beim Übergang vom optisch dichteren zum optisch dünneren Medium kann Totalreflexion auftreten.
  • Den Grenzwinkel der Totalreflexion \(\alpha_{\rm{Gr}}\) hängt von den beiden Materialien ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Übergang zwischen zwei Medien wird ein Teil des Lichtes reflektiert.
  • Nur beim Übergang vom optisch dichteren zum optisch dünneren Medium kann Totalreflexion auftreten.
  • Den Grenzwinkel der Totalreflexion \(\alpha_{\rm{Gr}}\) hängt von den beiden Materialien ab.

Zum Artikel Zu den Aufgaben

Gesetz von MALUS

Grundwissen

  • Gesetz von MALUS: \(I=I_0\cdot \cos^2\left( \alpha \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gesetz von MALUS: \(I=I_0\cdot \cos^2\left( \alpha \right)\)

Zum Artikel Zu den Aufgaben

Polarisation von Licht - Einführung

Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel
Grundwissen

  • Die Polarisation beschreibt die Schwingungsrichtung einer Transversalwelle.
  • Lineare Polarisationsfilter können nur von Licht einer bestimmten Schwingungsrichtung passiert werden.
  • Laserlicht und das Licht von Computerdisplays ist polarisiert.

Zum Artikel Zu den Aufgaben

Polarisation von Licht - Fortführung

Grundwissen

  • Passiert unpolarisiertes Licht einen idealen linearen Polarisationsfilter, so halbiert sich seine Intensität.
  • Sind zwei Polarisationsfilter mit ihren Polarisationsachsen senkrecht zueinander ausgerichtet, kann kein Licht die Anordnung passieren.
  • Sind zwei Polarisationsfilter mit ihren Polarisationsachsen verdreht zueinander ausgerichtet, passiert ein Teil des Lichtes die Anordnung mit geänderter Polarisationsrichtung.

Zum Artikel
Grundwissen

  • Passiert unpolarisiertes Licht einen idealen linearen Polarisationsfilter, so halbiert sich seine Intensität.
  • Sind zwei Polarisationsfilter mit ihren Polarisationsachsen senkrecht zueinander ausgerichtet, kann kein Licht die Anordnung passieren.
  • Sind zwei Polarisationsfilter mit ihren Polarisationsachsen verdreht zueinander ausgerichtet, passiert ein Teil des Lichtes die Anordnung mit geänderter Polarisationsrichtung.

Zum Artikel Zu den Aufgaben

BREWSTER-Winkel

Grundwissen

  • Fällt unpolarisiertes Licht im Brewster-Winkel auf die Grenzfläche zweier Medien, so ist das reflektierte Licht senkrecht zur Einfallsebene polarisiert.
  • Für den Brewster-Winkel gilt:  \(\theta_{\rm B}=\tan^{-1}\left(\frac{n_2}{n_1}\right)\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Fällt unpolarisiertes Licht im Brewster-Winkel auf die Grenzfläche zweier Medien, so ist das reflektierte Licht senkrecht zur Einfallsebene polarisiert.
  • Für den Brewster-Winkel gilt:  \(\theta_{\rm B}=\tan^{-1}\left(\frac{n_2}{n_1}\right)\).

Zum Artikel Zu den Aufgaben

Doppelspalt

Grundwissen

  • Das Schirmbild hinter einem Doppelspalt zeigt Beugungs- und Interferenzerscheinungen.
  • Die Lage der Maxima und Minima wird u.a. vom Spaltabstand \(d\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Es gibt Bedingungen für konstruktive und destruktive Interferenz.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Schirmbild hinter einem Doppelspalt zeigt Beugungs- und Interferenzerscheinungen.
  • Die Lage der Maxima und Minima wird u.a. vom Spaltabstand \(d\) und der Wellenlänge \(\lambda\) beeinflusst.
  • Es gibt Bedingungen für konstruktive und destruktive Interferenz.

Zum Artikel Zu den Aufgaben

Gittertypen

Grundwissen

  • Man unterscheidet zwischen Transmissions- und Reflexionsgittern.
  • Bei Transmissionsgittern passiert das Licht ein Gitter und wird gebeugt.
  • Bei Reflexionsgittern entstehen Beugungseffekte durch Reflexion an einer präpariertem, spiegelnden Schicht.

Zum Artikel
Grundwissen

  • Man unterscheidet zwischen Transmissions- und Reflexionsgittern.
  • Bei Transmissionsgittern passiert das Licht ein Gitter und wird gebeugt.
  • Bei Reflexionsgittern entstehen Beugungseffekte durch Reflexion an einer präpariertem, spiegelnden Schicht.

Zum Artikel Zu den Aufgaben

Geometrie der Ellipse

Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel
Grundwissen

  • Planetenbahnen können nach KEPLER sehr gut als Ellipsen beschrieben werden.
  • Ellipsen haben zwei Brennpunkte.
  • Wichtige Begriffe sind die große Halbachse \(a\), die kleine Halbachse \(b\) und die Exzentrizität \(\varepsilon\).

Zum Artikel Zu den Aufgaben

Das menschliche Auge - Aufbau und scharfes Sehen

Grundwissen

  • Das menschliche Auge besteht u.a. aus einer (Sammel-)Linse und der Netzhaut, auf die das Bild der Umwelt abgebildet wird.
  • Um einen Gegenstand scharf zu sehen, muss der Gegenstand scharf auf der Netzhaut abgebildet werden.
  • Die Brennweite der Augenlinse verändert sich wenn du nahe bzw. weit entfernte Gegenstände anschaust.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das menschliche Auge besteht u.a. aus einer (Sammel-)Linse und der Netzhaut, auf die das Bild der Umwelt abgebildet wird.
  • Um einen Gegenstand scharf zu sehen, muss der Gegenstand scharf auf der Netzhaut abgebildet werden.
  • Die Brennweite der Augenlinse verändert sich wenn du nahe bzw. weit entfernte Gegenstände anschaust.

Zum Artikel Zu den Aufgaben

BRAGG-Reflexion

Grundwissen

  • Elektromagnetische Wellen mit kleinen Wellenlängen wie z.B. RÖNTGEN-Strahlung untersucht man mit Hilfe von Kristallen, die eine regelmäßige Gitterstruktur besitzen
  • Eine elektromagnetische Welle mit einer bestimmten Wellenlänge wird von einem solchen Kristall nur dann reflektiert, wenn sie unter ganz bestimmten Winkeln (Glanzwinkeln) auf den Kristall trifft
  • Zwischen der Wellenlänge \(\lambda\), dem Netzebenenabstand \(d\) des Kristallgitters, den Weiten \(\theta_k \) der Glanzwinkel und der entsprechenden Ordnung \(k\) des Glanzwinkels besteht die sogenannte BRAGG-Gleichung oder BRAGG-Bedingung \(k \cdot \lambda  = 2 \cdot d \cdot \sin \left( \theta_k  \right)\;;\;k \in \left\{ {1\,;\,2\,;\,3\,;\,...} \right\}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektromagnetische Wellen mit kleinen Wellenlängen wie z.B. RÖNTGEN-Strahlung untersucht man mit Hilfe von Kristallen, die eine regelmäßige Gitterstruktur besitzen
  • Eine elektromagnetische Welle mit einer bestimmten Wellenlänge wird von einem solchen Kristall nur dann reflektiert, wenn sie unter ganz bestimmten Winkeln (Glanzwinkeln) auf den Kristall trifft
  • Zwischen der Wellenlänge \(\lambda\), dem Netzebenenabstand \(d\) des Kristallgitters, den Weiten \(\theta_k \) der Glanzwinkel und der entsprechenden Ordnung \(k\) des Glanzwinkels besteht die sogenannte BRAGG-Gleichung oder BRAGG-Bedingung \(k \cdot \lambda  = 2 \cdot d \cdot \sin \left( \theta_k  \right)\;;\;k \in \left\{ {1\,;\,2\,;\,3\,;\,...} \right\}\)

Zum Artikel Zu den Aufgaben

Bewegung der Himmelskörper

Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel
Grundwissen

  • Die Himmelskörper ruhen nicht, sondern sie befinden sich in einer oder mehreren Drehbewegungen.

Zum Artikel Zu den Aufgaben