Direkt zum Inhalt
Suchergebnisse 31 - 60 von 227

Osterexperiment

Grundwissen
Grundwissen

Monat

Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel
Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel Zu den Aufgaben

Wechselwirkung ungleich Gleichgewicht

Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel
Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel Zu den Aufgaben

Wellen

Grundwissen

  • Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
  • Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
  • Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.

Zum Artikel
Grundwissen

  • Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
  • Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
  • Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.

Zum Artikel Zu den Aufgaben

Kosmische Hintergrundstrahlung

Grundwissen

  • Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
  • Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
  • Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie. 

Zum Artikel
Grundwissen

  • Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
  • Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
  • Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie. 

Zum Artikel Zu den Aufgaben

Gas- und Dampfkraftwerk (GuD-Kraftwerk)

Grundwissen
Grundwissen

Himmelskugel

Grundwissen

  • Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
  • Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
  • Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
  • Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
  • Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)

Zum Artikel Zu den Aufgaben

Lauf der Gestirne

Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben

Sonnenspektrum

Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (FRAUNHOFER-Linien), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben

Physik beim Fahrradfahren

Grundwissen
Grundwissen

Astronomische Koordinatensysteme

Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben

Ablesen von Kraftmessern

Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben

Federpendel

Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichförmigen Bewegung

Grundwissen

  • Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
  • Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
  • Es gilt \(s=v\cdot t\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
  • Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
  • Es gilt \(s=v\cdot t\)

Zum Artikel Zu den Aufgaben

Geschwindigkeit bei gleichförmiger Bewegung

Grundwissen

  • Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
  • Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
  • Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
  • Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
  • Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)

Zum Artikel Zu den Aufgaben

Mittlere Geschwindigkeit

Grundwissen

  • Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
  • Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
  • Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)

Zum Artikel Zu den Aufgaben

Beschleunigte Bewegung

Grundwissen

  • Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers

Zum Artikel
Grundwissen

  • Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichmäßig beschleunigten Bewegung

Grundwissen

  • Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
  • Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.

Zum Artikel
Grundwissen

  • Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
  • Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.

Zum Artikel Zu den Aufgaben

Beschleunigung bei gleichmäßig beschleunigter Bewegung

Grundwissen

  • Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
  • Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
  • Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
  • Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
  • Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben

Mittlere Beschleunigung

Grundwissen

  • Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
  • Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
  • Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)

Zum Artikel Zu den Aufgaben

Raketenphysik

Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Antrieb von Raketen beruht auf dem Rückstoßprinzip beim Ausströmen des Treibstoffs aus der Rakete.
  • Unter bestimmten Annahmen kann man die Geschwindigkeit und die Höhe der Rakete nach dem Ausströmen des gesamten Treibstoffs berechnen.
  • Beide Größen sind unter anderem von der Ausströmgeschwindigkeit des Treibstoffs und dem Massenverhältnis von Rakete mit zu Rakete ohne Treibstoff abhängig.

Zum Artikel Zu den Aufgaben

Big Bang Theory Effekt

Grundwissen
Grundwissen

Bewegungsgesetze der gleichmäßig beschleunigten Bewegung

Grundwissen

  • Bei einer gleichmäßig beschleunigten Bewegung ist die Beschleunigung \(a\neq 0\).
  • Das Zeit-Geschwindigkeit-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(v=a\cdot t\).
  • Das Zeit-Ort-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(s=\frac{1}{2}a\cdot t^2\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer gleichmäßig beschleunigten Bewegung ist die Beschleunigung \(a\neq 0\).
  • Das Zeit-Geschwindigkeit-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(v=a\cdot t\).
  • Das Zeit-Ort-Gesetz lautet bei Beschleunigung aus der Ruhe heraus \(s=\frac{1}{2}a\cdot t^2\).

Zum Artikel Zu den Aufgaben

Potenzielle Energie im Gravitationsfeld

Grundwissen

  • Die potentielle Energie im Gravitationsfeld hängt von der Wahl des Nullpunktes der potentiellen Energie ab.
  • Ist \(E_{{\rm{pot,Erde}}} = 0\), dann gilt \({E_{{\rm{pot}}}}(r) = G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{{\rm{Erde}}}}}} - \frac{1}{r}} \right)\text{ wobei }r \ge {r_{{\rm{Erde}}}}\)
  • Typischer ist es, den Nullpunkt der potentiellen Energie ins Unendliche zu legen. Dann gilt \(E_{\rm{pot}}= -G \cdot m \cdot M \cdot \frac{1}{r}\text{ wobei } r \ge {r_{{\rm{Erde}}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die potentielle Energie im Gravitationsfeld hängt von der Wahl des Nullpunktes der potentiellen Energie ab.
  • Ist \(E_{{\rm{pot,Erde}}} = 0\), dann gilt \({E_{{\rm{pot}}}}(r) = G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{{\rm{Erde}}}}}} - \frac{1}{r}} \right)\text{ wobei }r \ge {r_{{\rm{Erde}}}}\)
  • Typischer ist es, den Nullpunkt der potentiellen Energie ins Unendliche zu legen. Dann gilt \(E_{\rm{pot}}= -G \cdot m \cdot M \cdot \frac{1}{r}\text{ wobei } r \ge {r_{{\rm{Erde}}}}\)

Zum Artikel Zu den Aufgaben

Gravitationsfeld

Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Raum um eine Masse herrscht ein Gravitationsfeld. Dieses Gravitationsfeld übertragt die Kraftwirkung dieser Masse auf andere Massen.
  • Als Gravitationsfeldstärke definieren wir den Quotienten aus der Gravitationskraft \({\vec F_{\rm{G}}}\) auf einen Probekörper und der Masse \(m\) des Probekörpers: \(\vec g = \frac{{{{\vec F}_{\rm{G}}}}}{m}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke im Raum um eine punktförmige Masse ist proportional zu deren Masse \(M\) und umgekehrt proportional zum Quadrat des Abstands \(r\) zur Masse \(M\) (radiales Gravitationsfeld): \(g = G \cdot \frac{M}{{{r^2}}}\) mit der Gravitationskonstante \(G = 6{,}673 \cdot {10^{ - 11}}\,\frac{{{{\rm{m}}^3}}}{{{\rm{kg}} \cdot {{\rm{s}}^2}}}\).
  • Der Betrag \(g\) der Gravitationsfeldstärke an der Erdoberfläche ist konstant (homogenes Gravitationsfeld). Wir nutzen den Wert \(g = 9{,}81\frac{{\rm{N}}}{{{\rm{kg}}}}\).

Zum Artikel Zu den Aufgaben

Arbeit im Gravitationsfeld

Grundwissen

  • Nur im homogenen Bereich des Gravitationsfeldes kann die Arbeit mit \(\Delta {W_{{\rm{Hub}}}} = m \cdot g \cdot \Delta h\) berechnet werden.
  • Um einen Körper von der Erdoberfläche bis zu einem Abstand \(r\) vom Erdmittelpunkt zu bewegen, muss die Arbeit \(\Delta W=G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{\rm{A}}}}} - \frac{1}{{{r_{\rm{E}}}}}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nur im homogenen Bereich des Gravitationsfeldes kann die Arbeit mit \(\Delta {W_{{\rm{Hub}}}} = m \cdot g \cdot \Delta h\) berechnet werden.
  • Um einen Körper von der Erdoberfläche bis zu einem Abstand \(r\) vom Erdmittelpunkt zu bewegen, muss die Arbeit \(\Delta W=G \cdot m \cdot M \cdot \left( {\frac{1}{{{r_{\rm{A}}}}} - \frac{1}{{{r_{\rm{E}}}}}} \right)\)

Zum Artikel Zu den Aufgaben

Gleichmäßig verzögerte Bewegung

Grundwissen

  • Ein Abbremsen, physikalisch eine Verzögerung, ist eine beschleunigte Bewegung mit negativer Beschleunigung, also \(a<0\).
  • Das Zeit-Geschwindigkeit-Gesetz der gleichmäßig verzögerten Bewegung ist \(v = a \cdot t + {v_0}\)
  • Das Zeit-Ort-Gesetz der gleichmäßig verzögerten Bewegung ist \(s = \frac{1}{2} \cdot a \cdot t^2 + {v_0}\cdot t\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein Abbremsen, physikalisch eine Verzögerung, ist eine beschleunigte Bewegung mit negativer Beschleunigung, also \(a<0\).
  • Das Zeit-Geschwindigkeit-Gesetz der gleichmäßig verzögerten Bewegung ist \(v = a \cdot t + {v_0}\)
  • Das Zeit-Ort-Gesetz der gleichmäßig verzögerten Bewegung ist \(s = \frac{1}{2} \cdot a \cdot t^2 + {v_0}\cdot t\)

Zum Artikel Zu den Aufgaben

Fundamentale und abgeleitete Kräfte

Grundwissen

  • Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
  • Fundamentale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
  • Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet in der Physik zwischen fundamentalen und abgeleiteten Kräften.
  • Fundamentale Kräfte sind z.B. die Gravitationskraft und die elektrische Kraft.
  • Abgeleitete Kräfte sind z.B. die Federkraft, die Reibungskraft und die Auftriebskraft.

Zum Artikel Zu den Aufgaben

Beschreibung von Kräften

Grundwissen

Sowohl die verformende als auch die beschleunigende Wirkung einer Kraft hängen von

  • dem Betrag (Stärke)
  • der Richtung und
  • dem Angriffspunkt

der Kraft ab.

Aus diesem Grund beschreiben wir Kräfte durch Pfeile.

  • Die Länge des Pfeils beschreibt den Betrag (Stärke) der Kraft.
  • Die Richtung des Pfeils beschreibt die Richtung der Kraft.
  • Der Fuß- oder Startpunkt des Pfeils (und nicht die Spitze!) beschreibt den Angriffspunkt der Kraft.

Zum Artikel Zu den Aufgaben
Grundwissen

Sowohl die verformende als auch die beschleunigende Wirkung einer Kraft hängen von

  • dem Betrag (Stärke)
  • der Richtung und
  • dem Angriffspunkt

der Kraft ab.

Aus diesem Grund beschreiben wir Kräfte durch Pfeile.

  • Die Länge des Pfeils beschreibt den Betrag (Stärke) der Kraft.
  • Die Richtung des Pfeils beschreibt die Richtung der Kraft.
  • Der Fuß- oder Startpunkt des Pfeils (und nicht die Spitze!) beschreibt den Angriffspunkt der Kraft.

Zum Artikel Zu den Aufgaben