Direkt zum Inhalt
Suchergebnisse 31 - 55 von 55

Temperaturumrechnung

Grundwissen

  • Für die Umrechnung von Kelvin in Grad Celsius subtrahierst du 273,15 und passt die Einheit an.
  • Für die Umrechnung von Grad Celsius in Kelvin addierst du 273,15 und passt die Einheit an.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für die Umrechnung von Kelvin in Grad Celsius subtrahierst du 273,15 und passt die Einheit an.
  • Für die Umrechnung von Grad Celsius in Kelvin addierst du 273,15 und passt die Einheit an.

Zum Artikel Zu den Aufgaben

Gesetz von BOYLE und MARIOTTE

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einer konstanten Temperatur \(T\) gehalten, während sich der Druck oder das Volumen der Gasmenge ändern, so spricht man von einer isothermen Zustandsänderung der Gasmenge.
  • Bei derartigen isothermen Zuständänderungen ist das Volumen \(V\) der Gasmenge umgekehrt proportional zum Druck \(p\)\[V \sim \frac{1}{p}\;\;\;\rm{bzw.}\;\;\;p \cdot V\;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;p_1 \cdot V_1 = p_2 \cdot V_2\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einer konstanten Temperatur \(T\) gehalten, während sich der Druck oder das Volumen der Gasmenge ändern, so spricht man von einer isothermen Zustandsänderung der Gasmenge.
  • Bei derartigen isothermen Zuständänderungen ist das Volumen \(V\) der Gasmenge umgekehrt proportional zum Druck \(p\)\[V \sim \frac{1}{p}\;\;\;\rm{bzw.}\;\;\;p \cdot V\;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;p_1 \cdot V_1 = p_2 \cdot V_2\]

Zum Artikel Zu den Aufgaben

Gesetz von GAY-LUSSAC

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Druck \(p\) gehalten, während sich die Temperatur oder das Volumen der Gasmenge ändern, so spricht man von einer isobaren Zustandsänderung der Gasmenge.
  • Bei derartigen isobaren Zuständänderungen ist das Volumen \(V\) proportional zur Temperatur \(T\)\[V \sim T\;\;\;\rm{bzw.}\;\;\;\frac{V}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{V_1}{T_1} = \frac{V_2}{T_2}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Druck \(p\) gehalten, während sich die Temperatur oder das Volumen der Gasmenge ändern, so spricht man von einer isobaren Zustandsänderung der Gasmenge.
  • Bei derartigen isobaren Zuständänderungen ist das Volumen \(V\) proportional zur Temperatur \(T\)\[V \sim T\;\;\;\rm{bzw.}\;\;\;\frac{V}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{V_1}{T_1} = \frac{V_2}{T_2}\]

Zum Artikel Zu den Aufgaben

Phasenübergänge

Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben
Grundwissen

  • Phasenübergänge sind zwischen allen Zuständen (fest. flüssig, gasförmig) möglich.
  • Bei Phasenübergängen muss Energie hinzugefügt werden bzw. wird Energie frei. Die Temperatur verändert sich dabei zunächst nicht.
  • Bei den Phasenübergängen verändern sich die Bindungen zwischen den Teilchen. Die potentielle Energie (Teil der inneren Energie) ändert sich hierbei

Zum Artikel Zu den Aufgaben

Erster Hauptsatz der Wärmelehre

Grundwissen

  • Die innere Energie \(E_{\rm{i}}\) eines Systems kann durch Zufuhr oder Entzug von mechanische Arbeit \(W\) und/oder einer Wärmemenge \(Q\) erhöht oder verringert werden.
  • Der 1. Hauptsatz der Wärmelehre lautet \(\Delta E_{\rm i} = W + Q\).

Zum Artikel
Grundwissen

  • Die innere Energie \(E_{\rm{i}}\) eines Systems kann durch Zufuhr oder Entzug von mechanische Arbeit \(W\) und/oder einer Wärmemenge \(Q\) erhöht oder verringert werden.
  • Der 1. Hauptsatz der Wärmelehre lautet \(\Delta E_{\rm i} = W + Q\).

Zum Artikel Zu den Aufgaben

Wärmeleitung

Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmeleitung bewegt sich nur die Wärme durch den Körper, die einzelnen Teilchen, aus denen der Körper besteht, bleiben dagegen an ihrem Platz
  • Wärmeleitung tritt deshalb meistens beim Wärmetransport in und zwischen Festkörpern auf
  • Metalle sind gute Wärmeleiter, Flüssigkeiten und Gase dagegen sind schlechte Wärmeleiter

Zum Artikel Zu den Aufgaben

Wärmemitführung

Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der Wärmemitführung (Wärmeströmung, Konvektion) bewegt sich die Wärme mit den einzelnen Teilchen, aus denen der Körper besteht, durch den Körper hindurch - es findet also auch ein Materietransport statt
  • Wärmemitführung tritt in der Regel nur in Flüssigkeiten und Gasen auf.

Zum Artikel Zu den Aufgaben

Treibhauseffekt

Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Man unterscheidet zwischen natürlichem und vom Menschen gemachten Treibhauseffekt.
  • Der natürliche Treibhauseffekt macht die Erde erst lebenswert.
  • Der menschengemachte Treibhauseffekt durch Ausstoß von Treibhausgasen sorgt für eine weitere Erderwärmung mit vielen negativen Folgen.

Zum Artikel Zu den Aufgaben

Gesetz von AMONTONS

Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wird eine feste Menge (konstante Teilchenzahl \(N\)) eines Idealen Gases auf einem konstanten Volumen \(V\) gehalten, während sich die Temperatur oder der Druck der Gasmenge ändern, so spricht man von einer isochoren Zustandsänderung der Gasmenge.
  • Bei derartigen isochoren Zustandsänderungen ist der Druck \(p\) proportional zur Temperatur \(T\)\[p \sim T\;\;\;\rm{bzw.}\;\;\;\frac{p}{T} \;\rm{ist\;konstant}\;\;\;\rm{bzw.}\;\;\;\frac{p_1}{T_1} = \frac{p_2}{T_2}\]

Zum Artikel Zu den Aufgaben

Volumenänderung von Flüssigkeiten

Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Flüssigkeiten dehnen sich in der Regel beim Erwärmen unterschiedlich stark aus.
  • Die Volumenänderung hängt vom Raumausdehnungskoeffizienten der Flüssigkeit ab.
  • Wasser verhält sich bei niedrigen Temperaturen knapp über dem Gefrierpunkt anomal.

Zum Artikel Zu den Aufgaben

Volumenänderung von Gasen

Grundwissen

  • Gase dehnen sich beim Erwärmen stark aus.
  • Verschiedene Gase zeigen bei ihrem Ausdehnungsverhalten kaum Unterschiede.
  • Bei Messungen ist auf konstanten Druck zu achten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Gase dehnen sich beim Erwärmen stark aus.
  • Verschiedene Gase zeigen bei ihrem Ausdehnungsverhalten kaum Unterschiede.
  • Bei Messungen ist auf konstanten Druck zu achten.

Zum Artikel Zu den Aufgaben

Anomalie des Wassers

Grundwissen

  • Wasser besitzt seine größte Dichte bei 4 °C.
  • Unterhalb von 4 °C nimmt die Dichte wieder ab.
  • Wasser besitzt eine größere Dichte als Eis.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wasser besitzt seine größte Dichte bei 4 °C.
  • Unterhalb von 4 °C nimmt die Dichte wieder ab.
  • Wasser besitzt eine größere Dichte als Eis.

Zum Artikel Zu den Aufgaben

Spezifische Wärmekapazität

Grundwissen

  • Die spezifische Wärmekapazität ist eine Materialkonstante.
  • Die spezifische Wärmekapazitätist ein Maß für diejenige Energie, die man benötigt, um \(1\,\rm{kg}\) eines Stoffes um \(1\,\rm{K}\) zu erwärmen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die spezifische Wärmekapazität ist eine Materialkonstante.
  • Die spezifische Wärmekapazitätist ein Maß für diejenige Energie, die man benötigt, um \(1\,\rm{kg}\) eines Stoffes um \(1\,\rm{K}\) zu erwärmen.

Zum Artikel Zu den Aufgaben

Spezifische Schmelz- und Verdampfungswärme

Grundwissen

  • Wenn die Bindungen der Teilchen bei einem Übergang loser wird, muss Energie hinzugefügt werden (fest->flüssig, flüssig->gasförmig, fest->gasförmig).
  • Wenn die Bindungen der Teilchen bei einem Übergang fester wird, wird Energie frei (gasförmig->flüssig, flüssig->fest, gasförmig->fest).
  • Die spezifische Schmelz- bzw. Verdampfungswärme ist eine Materialkonstante, die häufig in \(\rm{\frac{J}{kg}}\) angegeben wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wenn die Bindungen der Teilchen bei einem Übergang loser wird, muss Energie hinzugefügt werden (fest->flüssig, flüssig->gasförmig, fest->gasförmig).
  • Wenn die Bindungen der Teilchen bei einem Übergang fester wird, wird Energie frei (gasförmig->flüssig, flüssig->fest, gasförmig->fest).
  • Die spezifische Schmelz- bzw. Verdampfungswärme ist eine Materialkonstante, die häufig in \(\rm{\frac{J}{kg}}\) angegeben wird.

Zum Artikel Zu den Aufgaben

Wärmekraftmaschine, Kältemaschine und Wärmepumpe

Grundwissen

  • Wärmekraftmaschinen (z.B. Dampfmaschine oder Benzinmotor) nutzen Temperaturdifferenzen aus, um hiermit Arbeit \(W\) zu verrichten.
  • Dabei fließt eine Wärmemenge \(Q\) von einem Reservoir höherer Temperatur in ein Gebiet mit niedrigerer Temperatur.
  • Kältemaschinen (z.B. Kühlschrank) und Wärmepumpen verrichten Arbeit \(W\), um eine Wärmemenge \(Q\) von niedrigem auf ein höheres Energieniveau zu transportieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wärmekraftmaschinen (z.B. Dampfmaschine oder Benzinmotor) nutzen Temperaturdifferenzen aus, um hiermit Arbeit \(W\) zu verrichten.
  • Dabei fließt eine Wärmemenge \(Q\) von einem Reservoir höherer Temperatur in ein Gebiet mit niedrigerer Temperatur.
  • Kältemaschinen (z.B. Kühlschrank) und Wärmepumpen verrichten Arbeit \(W\), um eine Wärmemenge \(Q\) von niedrigem auf ein höheres Energieniveau zu transportieren.

Zum Artikel Zu den Aufgaben

Strahlungshaushalt der Erde

Grundwissen

  • Als Mittelwert für die Energieeinstrahlung durch die Sonne gelten \(341\,\rm{\frac{W}{m^2}}\), also etwa ein Viertel der Solarkonstanten \(S_0\)
  • Insgesamt ist der Strahlungshaushalt immer in etwa ausgeglichen: Die eingestrahlte Energie entspricht in etwa der abgestrahlten Energie.
  • Beim Strahlungshaushalt der Erde müssen viele Variablen berücksichtigt werden, Darstellungen sind daher immer vereinfacht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Als Mittelwert für die Energieeinstrahlung durch die Sonne gelten \(341\,\rm{\frac{W}{m^2}}\), also etwa ein Viertel der Solarkonstanten \(S_0\)
  • Insgesamt ist der Strahlungshaushalt immer in etwa ausgeglichen: Die eingestrahlte Energie entspricht in etwa der abgestrahlten Energie.
  • Beim Strahlungshaushalt der Erde müssen viele Variablen berücksichtigt werden, Darstellungen sind daher immer vereinfacht.

Zum Artikel Zu den Aufgaben

Wärmelehre

Allgemeines Gasgesetz

  • Warum transportieren Taucher Sauerstoff in Metallflaschen?
  • Was geschieht, wenn man Luft immer weiter abkühlt?
  • Warum benutzt man im Weltall Gasthermometer?

Zum Themenbereich
Themenbereich

Wärmelehre

Ausdehnung bei Erwärmung

  • Wie funktioniert ein Heißluftballon?
  • Wofür sind die Dehnungsfugen in Mauern?
  • Warum darf man keine Wasserflaschen ins Eisfach legen?
  • Wie überleben Fische eigentlich im Winter?

Zum Themenbereich
Themenbereich

Wärmelehre

Innere Energie - Wärmekapazität

  • Was lässt sich leichter erwärmen, Wasser oder Blei?
  • Warum ist es am Meer oft wärmer als im Landesinneren?
  • Kann man Eisen mit einem Hammer zum Glühen bringen?
  • Warum schwitzen wir eigentlich im Sommer?

Zum Themenbereich
Themenbereich

Wärmelehre

Kinetische Gastheorie

  • Was geschieht eigentlich in einem Gas, das man erwärmt?
  • Wie schnell bewegen sich die Teilchen in einem Gas?
  • Wie funktioniert eine Lichtmühle?

Zum Themenbereich
Themenbereich

Wärmelehre

Temperatur und Teilchenmodell

  • Wie entstand eigentlich die CELSIUS-Skala?
  • Woher kennt man den absoluten Nullpunkt?
  • Was geschieht in Körpern, wenn man sie erwärmt?
  • Wie wird Wärme zwischen Körper übertragen?

Zum Themenbereich
Themenbereich

Wärmelehre

Wärmekraftmaschinen

  • Wie funktioniert eigentlich eine Dampfmaschine?
  • Was ist so besonders an einem WANKEL-Motor?
  • OTTO- oder DIESEL-Motor?
  • Was versteht man unter einem Wirkungsgrad?

Zum Themenbereich
Themenbereich

Wärmelehre

Wärmetransport

  • Warum werden Häuser mit Schaumstoffen gedämmt?
  • Wie bleiben Tiere im Winter warm?
  • Wie kommt eigentlich die Wärme der Sonne zur Erde?

Zum Themenbereich
Themenbereich

Wärmelehre

Wetter und Klima

  • Wie entstehen eigentlich Wolken?
  • Was sind Hoch- und Tiefdruckgebiete?
  • Wie kommt es zu einem Gewitter?
  • Was ist der Treibhauseffekt?

Zum Themenbereich
Themenbereich

Wärmelehre

Deterministisches Chaos

  • Was versteht man unter dem Kausalprinzip?
  • Kann ein Schmetterling einen Wirbelsturm verursachen?
  • Deterministisches Chaos – ist das nicht ein Widerspruch?

Zum Themenbereich
Themenbereich