Suchergebnis für:
Grundaussagen der speziellen Relativitätstheorie
Grundwissen
- Das MICHELSON-MORLEY-Experiment brachte klassische Vorstellungen von absolutem Raum und absoluter Zeit ins Wanken.
- In EINSTEINs Relativitätstheorie sind daher Zeit und Raum relativ.
Grundwissen
- Das MICHELSON-MORLEY-Experiment brachte klassische Vorstellungen von absolutem Raum und absoluter Zeit ins Wanken.
- In EINSTEINs Relativitätstheorie sind daher Zeit und Raum relativ.
Grundwissen
Energie-Impuls-Beziehung
Grundwissen
- Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
- Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)
Grundwissen
- Klassisch ist die Beziehung zwischen kinetischer Energie und Impuls \({E_{\rm{kin}}} = \frac{{{p^2}}}{{2 \cdot m}}\)
- Relativistisch gilt zwischen Gesamtenergie, Ruheenergie und Impuls die Beziehung \(E = \sqrt{E_0^2 + (c\cdot p)^2}\)
Relativistische Energie
Grundwissen
- Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
- Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
- Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)
Grundwissen
- Die relativistische Gesamtenergie eines Körpers ist \(E(v)=m_{\rm{rel}}\cdot c^2=\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}}\cdot c^2\)
- Die Ruheenergie eines Körpers ist \(E_0=m_0\cdot c^2\)
- Die kinetische Energie ist die Differenz der Gesamtenergie \(E(v)\) und der Ruheenergie \(E_0\), also \(E_{\rm{kin}}=\left( {\frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} - {m_0}} \right) \cdot {c^2}\)
Längenkontraktion
Grundwissen
- Für bewegte Beobachter sind Strecken verkürzt.
- Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
- Die Längenkontraktion findet nur in Bewegungsrichtung statt.
Grundwissen
- Für bewegte Beobachter sind Strecken verkürzt.
- Für die Längenkontraktion gilt: \(\Delta x' = \Delta x \cdot \sqrt{1 - \left(\frac{v}{c}\right)^2}\)
- Die Längenkontraktion findet nur in Bewegungsrichtung statt.
EINSTEINs Postulate
Grundwissen
- Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
- Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.
Grundwissen
- Erstes Postulat (Relativitätsprinzip): Alle Inertialsysteme sind bezüglich aller physikalischen Gesetze gleichberechtigt.
- Zweites Postulat (Konstanz der Lichtgeschwindigkeit): Die Vakuumlichtgeschwindigkeit \(c\) ist in allen Inertialsystemen gleich groß.
Geschwindigkeitsbetrachtung
Grundwissen
- Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
- Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.
Grundwissen
- Klassische können Geschwindigkeiten von einem bewegten Bezugssystem und einer Bewegung innerhalb einfach addiert werden, um die Geschwindigkeit zu ermitteln, die man im ruhenden Bezugssystem messen würde.
- Die Konstanz der Lichtgeschwindigkeit hat zur Folge, dass diese einfache Addition nicht richtig sein kann.
Inertialsystem
Grundwissen
- Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
- Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.
Grundwissen
- Ein Inertialsystem ist ein Bezugssystem, in dem ein kräftefreier Körper in Ruhe verharrt oder sich geradlinig-gleichförmig bewegt.
- Alle Systeme, die sich geradlinig-gleichförmig gegenüber einem Inertialsystem bewegen, sind ebenfalls Inertialsysteme.
Effekte
Grundwissen
- Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
- Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
- Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!
Grundwissen
- Zeitdilatation: Eine bewegte Uhr geht langsamer als eine gleichartige im Ruhesystem!
- Gleichzeitigkeit ist relativ und hängt davon ab, von welchem Bezugssystem aus die Beobachtung erfolgt.
- Längenkontraktion: Ein bewegter Maßstab ist in Bewegungsrichtung kürzer als im Ruhesystem!
Zeitdilatation
Grundwissen
- Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
- Vereinfacht: Bewegte Uhren gehen langsamer.
- Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)
Grundwissen
- Zeitdilatation: Eine relativ zu einem Beobachter bewegte Uhr geht aus der Sicht des Beobachters langsamer als ein Satz synchronisierter Uhren im "Beobachter-System".
- Vereinfacht: Bewegte Uhren gehen langsamer.
- Der Zusammenhang zwischen Zeit \(\Delta t\) im ruhenden und \(\Delta t'\) im bewegten System ist \(\Delta t = \frac{\Delta t'}{\sqrt{1 - (\frac{v}{c})^2}}\)
Gleichzeitigkeit
Grundwissen
- In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
- Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
- Auch Gleichzeitigkeit ist relativ.
Grundwissen
- In einem Inertialsystem finden zwei Ereignisse an zwei verschiedenen Orten gleichzeitig statt, wenn sie von einem Lichtblitz ausgelöst werden können, der genau aus der Mitte zwischen ihren Orten ausgeht.
- Finden zwei Ereignisse in einem Inertialsystem gleichzeitig statt, so finden sie in einem zweiten, gegenüber dem ersten Inertialsystem bewegten Inertialsystem zu verschiedenen Zeiten statt.
- Auch Gleichzeitigkeit ist relativ.
Relativistische Masse und Impuls
Grundwissen
- Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
- Die relativistische Masse nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
- Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v \Rightarrow p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)
Grundwissen
- Auch die Masse eines Teilchens und sein Impuls unterliegen relativistischen Effekten.
- Die relativistische Masse nimmt mit der Geschwindigkeit \(v\) eines Teilchens stark zu, es gilt: \(m_{\rm{rel}}=\frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}\)
- Für den relativistischen Impuls gilt \(p = m_{\rm{rel}}\cdot v \Rightarrow p = \frac{m_0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} \cdot v\)
Geschwindigkeitsaddition
Grundwissen
- Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).
Grundwissen
- Ist \(u\) die Geschwindigkeit eines Körpers im System S und \(v\) die Geschwindigkeit des Systems S' in Bezug auf S und \(u'\) die Geschwindigkeit des Körpers im System S', dann gilt der Zusammenhang \(u = \frac{{u' + v}}{{1 + \frac{{u' \cdot v}}{{{c^2}}}}}\).
Relativitätstheorie
Erster Einblick
- Was versteht man unter einem Inertialsystem?
- Ist Licht im ganzen Universum immer gleich schnell?
- Warum gehen bewegte Uhren langsamer …
- … und warum sind bewegte Maßstäbe kürzer?
Themenbereich
Relativitätstheorie
Spezielle Relativitätstheorie
- Warum vergrößert sich die Masse bewegter Körper?
- Was versteht man unter der Ruheenergie eines Körpers?
- Wie kommt Einstein zu seiner berühmten Formel E=mc2?
Themenbereich
Absolute Temperatur
Grundwissen
- Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
- Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
- Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
- Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.
Grundwissen
- Der absolute Nullpunkt der Temperatur liegt bei \(\vartheta=-273{,}15\,^\circ{\rm C}\).
- Die Kelvin-Skala hat ihren Nullpunkt am absoluten Nullpunkt. Eine Temperatur von \(\vartheta=-273,15\,^\circ{\rm C}\) entspricht \(0\,{\rm K}\).
- Kelvin-Temperaturen werden mit \(T\) symbolisiert und die Einheit Kelvin wird mit \({\rm K}\) abgekürzt.
- Temperaturdifferenzen \(\Delta T\) werden in der Regel ebenfalls in \(\rm {K}\) angegeben.
Wärmestrahlung (Temperaturstrahlung)
Grundwissen
- Wärmestrahlung geht in der Regel von jedem Körper aus.
- Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
- Wärmestrahlung benötigt kein Medium um sich auszubreiten.
Grundwissen
- Wärmestrahlung geht in der Regel von jedem Körper aus.
- Je wärmer ein Körper ist, desto intensiver ist die Wärmestrahlung, die von ihm ausgeht.
- Wärmestrahlung benötigt kein Medium um sich auszubreiten.
Überblick über Wärmekraftmaschinen
Grundwissen
- Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
- Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
- Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.
Grundwissen
- Wärmekraftmaschinen erleichtern uns an vielen Stellen im Alltag das Leben.
- Die Dampfmaschine war die erste wichtige Wärmekraftmaschine.
- Der Wirkungsgrad von Wärmekraftmaschinen ist begrenzt.
Allgemeines Gasgesetz
Grundwissen
- Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
- Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)
Grundwissen
- Das Gesetz von BOYLE-MARIOTTE und das Gesetz von GAY-LUSSAC können zur allgemeinen Gasgleichung zusammengefasst werden.
- Die allgemeine Gasgleichung besagt: \(\frac{{p \cdot V}}{T}\;{\rm{ist}}\;{\rm{konstant}}\)
Änderung der inneren Energie
Grundwissen
- Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
- Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
- Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).
Grundwissen
- Eine Änderung der inneren Energie \(\Delta E_{\rm i}\) kann durch Verrichtung von Arbeit an einem Körper oder durch Übertragung von Wärme auf einen Körper erfolgen.
- Die Änderung der innere Energie \(\Delta E_{\rm i}\) ist proportional zur Temperaturänderung \(\Delta \vartheta\) und zur Masse \(m\) .
- Mathematisch wird der Zusammenhang beschrieben durch \(\Delta E_{\rm i}= c \cdot m\cdot \Delta \vartheta\).
Wärmetransport
Grundwissen
- Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
- Im Alltag treten oft mehrere Arten gemeinsam auf
- Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport
Grundwissen
- Wärmetransport kann auf drei unterschiedliche Arten stattfinden: durch Wärmeleitung, durch Wärmemitführung (Wärmeströmung oder Konvektion) oder durch Wärmestrahlung (Temperaturstrahlung)
- Im Alltag treten oft mehrere Arten gemeinsam auf
- Häufig leistet eine Transportart den mit Abstand größten Beitrag zum gesamten Wärmetransport
Teilchenmodell
Grundwissen
- Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
- Im Festkörper haben alle Teilchen einen festen Platz, um den sie sich bewegen.
- Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.
Grundwissen
- Alle Körper sind aus kleinen, sich ständig bewegenden Teilchen aufgebaut.
- Im Festkörper haben alle Teilchen einen festen Platz, um den sie sich bewegen.
- Je mehr ein Stoff erwärmt wird, desto mehr bewegen sich die Teilchen des Stoffes.
Universelle Gasgleichung
Grundwissen
Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\).
Grundwissen
Die universelle Gasgleichung lautet \[p \cdot V = k_{\rm B} \cdot N \cdot T\] mit dem Druck \(p\), dem Volumen \(V\), der Boltzmann-Konstanten \(k_{\rm B}\), der Teilchenzahl \(N\) und der Temperatur \(T\).
Starke und schwache Kausalität
Grundwissen
- Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
- Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
- Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.
Grundwissen
- Schwacher Kausalität liegt vor, wenn exakt gleiche Ursachen die stets gleiche Wirkung zur Folge haben.
- Starker Kausalität liegt vor, wenn ähnliche Ursachen eine ähnliche Wirkung zur Folge haben. Kleine Änderungen im Ausgangszustand führen nur zu kleinen Änderungen im Ergebnis.
- Viele Systeme in der Natur sind labile Gleichgewichtszustände. Hier liegt keine starke Kausalität vor.
Kausalitätsprinzip - Grenzen der NEWTONschen Mechanik
Grundwissen
- Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
- Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
- Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.
Grundwissen
- Würde man einen Zustand vollständig kennen, könnte man mit Hilfe der Naturgesetze alle Folgen daraus ableiten.
- Damit wäre alles Geschehen der Welt unabänderlich bestimmt (Determinismus).
- Die Quantenmechanik und die Relativitätstheorie machen jedoch die Grenzen des Determinismus deutlich.
Volumen- und Längenänderung von Festkörpern
Grundwissen
- Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
- Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
- Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).
Grundwissen
- Festkörper dehnen sich beim Erwärmen i.d.R. in alle Raumrichtung gleichmäßig aus.
- Bei Festkörpern gibt man oft den Längenausdehnungskoeffizienten \(\alpha\) an.
- Für die Längenänderung gilt \(\Delta l = \alpha \cdot {l_0} \cdot \Delta \vartheta\).
Viertakt-Ottomotor
Grundwissen
- Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
- Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
- Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.
Grundwissen
- Die 4 Takte sind: Ansaugen, Verdichten, Arbeiten, Auspuffen
- Mehrere Zylinder eines Motors laufen versetzt. Ziel ist, dass immer ein Zylinder gerade im Arbeitstakt ist.
- Der Wirkungsgrad eines Ottomotors liegt im Idealfall bei \(\eta=35\,\%\), meist jedoch deutlich darunter.
Volumenänderung von Stoffen
Grundwissen
- Die meisten Körper vergrößern bei Erwärmung ihr Volumen.
- Die Volumenänderung ist bei Gasen größer als bei Flüssigkeiten und bei Flüssigkeiten größer als bei Festkörpern.
- Wasser und Gummi verhalten sich in bestimmten Temperaturbereichen anders.
Grundwissen
- Die meisten Körper vergrößern bei Erwärmung ihr Volumen.
- Die Volumenänderung ist bei Gasen größer als bei Flüssigkeiten und bei Flüssigkeiten größer als bei Festkörpern.
- Wasser und Gummi verhalten sich in bestimmten Temperaturbereichen anders.
CELSIUS-Skala
Grundwissen
- Zur objektiven Bestimmung der Temperatur wird häufig eine Skala mit der Einteilung Grad Celsius (\(^\circ\rm{C}\)) genutzt.
- Der Schmelzpunkt des Eises wird als \(0\,^\circ\rm{C}\) festgelegt, der Siedepunkt des Wassers als \(100\,^\circ\rm{C}\).
- Der hundertste Teil dieses Abstandes ist die Temperaturdifferenz \(1\,^\circ\rm{C}\).
Grundwissen
- Zur objektiven Bestimmung der Temperatur wird häufig eine Skala mit der Einteilung Grad Celsius (\(^\circ\rm{C}\)) genutzt.
- Der Schmelzpunkt des Eises wird als \(0\,^\circ\rm{C}\) festgelegt, der Siedepunkt des Wassers als \(100\,^\circ\rm{C}\).
- Der hundertste Teil dieses Abstandes ist die Temperaturdifferenz \(1\,^\circ\rm{C}\).
BROWNsche Bewegung und Innere Energie
Grundwissen
- Die Atome eines Körpers sind auch ohne Krafteinwirkung von außen immer in Bewegung.
- Einen Festkörper kannst du dir als Feder-Kugel-Modell vorstellen.
- Die Summe aller kinetischen und potentiellen Energien der Atome eines Körpers wird als innere Energie bezeichnet.
Grundwissen
- Die Atome eines Körpers sind auch ohne Krafteinwirkung von außen immer in Bewegung.
- Einen Festkörper kannst du dir als Feder-Kugel-Modell vorstellen.
- Die Summe aller kinetischen und potentiellen Energien der Atome eines Körpers wird als innere Energie bezeichnet.