Direkt zum Inhalt
Suchergebnisse 181 - 210 von 2165

Stöße

Grundwissen

  • Mit Hilfe der Energie- und Impulserhaltung kannst du Ergebnisse von Stößen vorhersagen.
  • Man unterscheidet gerade und schiefe Stöße.
  • Beim elastischen Stoß ist die Gesamtenergie erhalten, beim unelastischen Stoß nicht.

Zum Artikel
Grundwissen

  • Mit Hilfe der Energie- und Impulserhaltung kannst du Ergebnisse von Stößen vorhersagen.
  • Man unterscheidet gerade und schiefe Stöße.
  • Beim elastischen Stoß ist die Gesamtenergie erhalten, beim unelastischen Stoß nicht.

Zum Artikel Zu den Aufgaben

Zentraler elastischer Stoß

Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einem elastischen Stoß sind der Impuls und die Energie erhalten.
  • Aus den beiden unabhängigen Gleichungen können zwei unbekannte Größen bestimmt werden.
  • Häufig werden Spezialfälle betrachtet, die den Rechenaufwand reduzieren.

Zum Artikel Zu den Aufgaben

Zentraler vollkommen unelastischer Stoß

Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim vollkommen unelastischen Stoß bewegen sich die Stoßpartner nach dem Stoß mit gleicher Geschwindigkeit in die gleiche Richtung.
  • Für die Geschwindigkeit nach dem Stoß gilt: \(v^\prime = \frac{{{m_1} \cdot {v_1} + {m_2} \cdot {v_2}}}{{{m_1} + {m_2}}}\)

Zum Artikel Zu den Aufgaben

Energie und Energieerhaltungssatz

Grundwissen

  • In einem abgeschlossenen System bleibt bei Reibungsfreiheit die gesamte mechanische Energie erhalten.
  • Verschiedenen Energieformen können lediglich ineinander umgewandelt werden (z.B. potentielle Energie, kinetische Energie, Spannenergie).

Zum Artikel Zu den Aufgaben
Grundwissen

  • In einem abgeschlossenen System bleibt bei Reibungsfreiheit die gesamte mechanische Energie erhalten.
  • Verschiedenen Energieformen können lediglich ineinander umgewandelt werden (z.B. potentielle Energie, kinetische Energie, Spannenergie).

Zum Artikel Zu den Aufgaben

Kraftstoß

Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein äußerer Kraftstoß \(F\cdot \Delta t\) ändert den Impuls \(p\) eines Systems.
  • Dabei gilt: \(\vec{F}\cdot \Delta t=\Delta \vec{p}\)

Zum Artikel Zu den Aufgaben

COULOMB-Gesetz

Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
  • Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
  • Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
  • Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.

Zum Artikel Zu den Aufgaben

Gleichförmige Bewegung

Grundwissen

  • Bei gleichförmiger Bewegung ist die Geschwindigkeit konstant.
  • Bei einer gleichförmigen Bewegung ändert sich die Richtung der Bewegung nicht.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei gleichförmiger Bewegung ist die Geschwindigkeit konstant.
  • Bei einer gleichförmigen Bewegung ändert sich die Richtung der Bewegung nicht.

Zum Artikel Zu den Aufgaben

Teilchen und Anti-Teilchen

Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
  • Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
  • Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um. 
  • Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.

Zum Artikel Zu den Aufgaben

Drehmoment

Grundwissen

  • Das Drehmoment \(M\) ist das Produkt aus Hebelarm \(a\) und Kraft \(F\): \(M=a\cdot F\)
  • Der Hebelarm \(a\) ist dabei der Abstand des Drehpunkts von der Wirkungslinie der Kraft.
  • Eigentlich sind viele Größen wie das Drehmoment oder die Kraft hier Vektoren, deren Richtung eine wichtige Rolle spielt.
  • Die Richtung des Drehmomentvektors kannst du mit der Drei-Finger-Regel der rechten Hand ermitteln.

Zum Artikel
Grundwissen

  • Das Drehmoment \(M\) ist das Produkt aus Hebelarm \(a\) und Kraft \(F\): \(M=a\cdot F\)
  • Der Hebelarm \(a\) ist dabei der Abstand des Drehpunkts von der Wirkungslinie der Kraft.
  • Eigentlich sind viele Größen wie das Drehmoment oder die Kraft hier Vektoren, deren Richtung eine wichtige Rolle spielt.
  • Die Richtung des Drehmomentvektors kannst du mit der Drei-Finger-Regel der rechten Hand ermitteln.

Zum Artikel Zu den Aufgaben

Rotationsenergie

Grundwissen

  • In rotierenden Systemen steckt Rotationsenergie.
  • Für die Rotationsenergie gilt \({E_\rm{Rot}} = \frac{1}{2} \cdot J \cdot {\omega ^2}\) wobei \(J\) das Trägheitsmoment ist.
  • Das Trägheitsmoment \(J\)hängt vom Körper und seiner Rotationsachse ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In rotierenden Systemen steckt Rotationsenergie.
  • Für die Rotationsenergie gilt \({E_\rm{Rot}} = \frac{1}{2} \cdot J \cdot {\omega ^2}\) wobei \(J\) das Trägheitsmoment ist.
  • Das Trägheitsmoment \(J\)hängt vom Körper und seiner Rotationsachse ab.

Zum Artikel Zu den Aufgaben

Analogie zwischen Linearer und Drehbewegung

Grundwissen

  • Zwischen linearen Bewegungen und Drehbewegungen lassen sich viele Analogien finden. Für viele Größen der linearen Bewegung existiert eine vergleichbare Größe bei Drehbewegungen.

Zum Artikel
Grundwissen

  • Zwischen linearen Bewegungen und Drehbewegungen lassen sich viele Analogien finden. Für viele Größen der linearen Bewegung existiert eine vergleichbare Größe bei Drehbewegungen.

Zum Artikel Zu den Aufgaben

Drehimpuls

Grundwissen

  • Der Drehimpuls \(\vec{L}\) eines Körpers ist \(\vec{L}=J\cdot\vec{\omega}\) mit Trägheitsmoment \(J\) und Winkelgeschwindigkeit \(\vec{\omega}\).
  • Der Drehimpuls ist eine Erhaltungsgröße: In einem abgeschlossenen System bleibt der Gesamtdrehimpuls konstant, wenn kein äußeres Drehmoment wirkt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Drehimpuls \(\vec{L}\) eines Körpers ist \(\vec{L}=J\cdot\vec{\omega}\) mit Trägheitsmoment \(J\) und Winkelgeschwindigkeit \(\vec{\omega}\).
  • Der Drehimpuls ist eine Erhaltungsgröße: In einem abgeschlossenen System bleibt der Gesamtdrehimpuls konstant, wenn kein äußeres Drehmoment wirkt.

Zum Artikel Zu den Aufgaben

Linsengleichungen

Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Abbildungsgleichung \(\frac{B}{G} = \frac{b}{g}\) beschreibt den Zusammenhang zwischen Bildgröße \(B\), Gegenstandsgröße \(G\), Bildweite \(b\) und Gegenstandsweite \(g\) bei einer Linsenabbildung.
  • Die Linsengleichung \(\frac{1}{f}=\frac{1}{b}+\frac{1}{g}\) beschreibt den Zusammenhang zwischen Brennweite \(f\), Gegenstandsweite \(g\) und Bildweite \(b\) bei einer Linsenabbildung.
  • Die Linsengleichung kann mithilfe der Hauptstrahlen und des Strahlensatzes hergeleitet werden.
  • Die Linsengleichung gilt sowohl für Sammel- als auch Zerstreuungslinsen.

Zum Artikel Zu den Aufgaben

Stoffverhalten

Grundwissen

  • Absorption - der Gegenstand nimmt das Licht "in sich" auf
  • regelmäßige Reflexion - der Gegenstand reflektiert das Licht in eine bestimmte Richtung
  • Streuung - der Gegenstand streut das Licht in verschiedenste Richtungen
  • Durchlassen des Lichtes (Durchsichtigkeit) - der Gegenstand lässt das Licht unverändert durch sich hindurch.

In der Regel treten mehrere dieser Phänomene gleichzeitig auf.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Absorption - der Gegenstand nimmt das Licht "in sich" auf
  • regelmäßige Reflexion - der Gegenstand reflektiert das Licht in eine bestimmte Richtung
  • Streuung - der Gegenstand streut das Licht in verschiedenste Richtungen
  • Durchlassen des Lichtes (Durchsichtigkeit) - der Gegenstand lässt das Licht unverändert durch sich hindurch.

In der Regel treten mehrere dieser Phänomene gleichzeitig auf.

Zum Artikel Zu den Aufgaben

Bewegungsgesetz der gleichförmigen Bewegung

Grundwissen

  • Bei der gleichförmigen Bewegung gilt \(v=\rm{konstant}\)
  • Das Zeit-Weg-Gesetz der gleichförmigen Bewegung lautet \(s=v\cdot t\)
  • Dabei hat der Körper zu \(t=0\,\rm{s}\) noch keine Strecke zurückgelegt

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei der gleichförmigen Bewegung gilt \(v=\rm{konstant}\)
  • Das Zeit-Weg-Gesetz der gleichförmigen Bewegung lautet \(s=v\cdot t\)
  • Dabei hat der Körper zu \(t=0\,\rm{s}\) noch keine Strecke zurückgelegt

Zum Artikel Zu den Aufgaben

Umrechnen von Geschwindigkeitseinheiten

Grundwissen

  • Maßeinheiten der Geschwindigkeit wie \(\rm{\frac{km}{h}}\) oder \(\rm{\frac{m}{s}}\) kannst du ineinander umrechnen.
  • Um von \(\rm{\frac{m}{s}}\) in \(\rm{\frac{km}{h}}\) umzurechnen, multiplizierst du die Maßzahl mit \(3{,}6\) und änderst die Maßeinheit.
  • Um von \(\rm{\frac{km}{h}}\) in \(\rm{\frac{m}{s}}\) umzurechnen, dividierst du die Maßzahl durch \(3{,}6\) und änderst die Maßeinheit.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Maßeinheiten der Geschwindigkeit wie \(\rm{\frac{km}{h}}\) oder \(\rm{\frac{m}{s}}\) kannst du ineinander umrechnen.
  • Um von \(\rm{\frac{m}{s}}\) in \(\rm{\frac{km}{h}}\) umzurechnen, multiplizierst du die Maßzahl mit \(3{,}6\) und änderst die Maßeinheit.
  • Um von \(\rm{\frac{km}{h}}\) in \(\rm{\frac{m}{s}}\) umzurechnen, dividierst du die Maßzahl durch \(3{,}6\) und änderst die Maßeinheit.

Zum Artikel Zu den Aufgaben

Umgekehrte Proportionalität

Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei zwei zueinander umgekehrt proportionalen Größen gehört zum Doppelten, Dreifachen, ... n-fachen der Größe \(x\) die Hälfte, ein Drittel, ... ein n-tel der Größe \(y\).
  • Zwei zueinander umgekehrt proportionale Größen sind produktgleich. Das Produkt \(x\cdot y\) nennt man die Proportionalitätskonstante (Proportionalitätsfaktor).
  • Anstelle des Begriffs umgekehrt proportional werden auch die Begriffe antiproportional und indirekt proportional genutzt.

Zum Artikel Zu den Aufgaben

Periodentafel der Elemente

Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Struktur im Periodensystem der Elemente legen Beobachtungen hinsichtlich der Ionisierungsenergie und des Molvolumens nahe.
  • Die Anordnung der Elemente im Periodensystem erfolgt nach ihrer Ordnungszahl (Kernladungszahl) \(Z\).

Zum Artikel Zu den Aufgaben

Scheinbare Sternhelligkeit

Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel
Grundwissen

  • Die scheinbare Helligkeit eines Sternes gibt an, wie hell ein Beobachter auf der Erde den Stern wahrnimmt.
  • Die scheinbare Helligkeit wird in \(\rm{mag}\) (für Magnituden) angegeben. Sterne mit kleineren \(\rm{mag}\)-Werten werden dabei als heller wahrgenommen als Sterne mit größeren \(\rm{mag}\)-Werten.
  • Die Skala der scheinbaren Helligkeiten basiert auf einem logarithmischen Zusammenhang. Als Nullpunkt dient die scheinbare Helligkeit des Sterns Wega.

Zum Artikel Zu den Aufgaben

Masse-Leuchtkraft-Beziehung

Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für Hauptreihensterne beobachtet man eine direkte Beziehung zwischen Sternmasse \(M\) und Leuchtkraft \(L\).
  • In erster Näherung gilt: \(L\sim M^3\)

Zum Artikel Zu den Aufgaben

Hauptreihenstadium

Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Im Hauptreihenstadium befinden sich Sterne während des stabilen Wasserstoffbrennens, das etwa \(90\,\%\) der Lebenszeit ausmacht.
  • Mit Wissen über die Masse sowie der Leuchtkraft eines Sterns und der empirischen Masse-Leuchtkraftbeziehung gilt für die Hauptreihenzeit eines Sterns \(t_{\rm{h}}\sim\frac{1}{m^2}\).

Zum Artikel Zu den Aufgaben

Sterngeburt

Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel
Grundwissen

  • Gas-, Staub- und Molekülwolken an den Rändern der Spiralarme der Galaxis sind Gebiete der Sternentstehung, da hier interstellare Masse konzentriert ist.
  • Das JEANS-Kriterium besagt, dass eine Gaswolke kollabiert und ein Stern entstehen kann, wenn ihre Masse größer als die JEANS-Masse ist.

Zum Artikel Zu den Aufgaben

Zusammenhang von Atom- und Kernmassen

Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel
Grundwissen

  • Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
  • Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
  • Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)

Zum Artikel Zu den Aufgaben

Zehnerpotenzen - Präfixe

Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel
Grundwissen

  • Mit Zehnerpotenzen kannst du sehr große und sehr kleine Größen übersichtlich schreiben.
  • Auch mit passenden Präfixen (Vorsilben) vor der Einheit kannst du Größen übersichtlich angeben.

Zum Artikel Zu den Aufgaben

Atomaufbau

Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel
Grundwissen

  • Modelle über den Atomaufbau haben sich ständig weiterentwickelt.
  • Ein Atom besteht aus einem sehr kleinen Atomkern und einer Hülle.
  • Der Atomkern besteht aus Protonen und Neutronen. In der Atomhülle halten sich die Elektronen auf.
  • Protonen und Neutronen bestehen wiederum jeweils aus drei Quarks.

Zum Artikel Zu den Aufgaben

Altersbestimmung mit der Radiocarbonmethode

Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotope hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotope hat.
  • Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
  • Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\)  das Alter der Probe berechnet werden.

Zum Artikel Zu den Aufgaben

Wirkungen von Kräften

Grundwissen

  • Nicht alles, was du im Alltag als Kraft bezeichnest, ist auch im physikalischen Sinne eine Kraft.
  • Physikalische Kräfte erkennst du an drei Wirkungen: Änderung des Geschwindigkeitsbetrags (Erhöhung oder Verringerung), Ändern der Geschwindigkeitsrichtung und Änderung der Form (Verformung).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nicht alles, was du im Alltag als Kraft bezeichnest, ist auch im physikalischen Sinne eine Kraft.
  • Physikalische Kräfte erkennst du an drei Wirkungen: Änderung des Geschwindigkeitsbetrags (Erhöhung oder Verringerung), Ändern der Geschwindigkeitsrichtung und Änderung der Form (Verformung).

Zum Artikel Zu den Aufgaben

Träge Masse

Grundwissen

  • Zwei Körper haben die gleiche (träge) Masse, wenn die Körper durch eine gleiche Kraft gleich beschleunigt werden.
  • Die Einheit der trägen Masse ist das Kilogramm.
  • Träge und schwere Masse stimmen überein. Man redet daher meist einfach von der Masse \(m\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei Körper haben die gleiche (träge) Masse, wenn die Körper durch eine gleiche Kraft gleich beschleunigt werden.
  • Die Einheit der trägen Masse ist das Kilogramm.
  • Träge und schwere Masse stimmen überein. Man redet daher meist einfach von der Masse \(m\).

Zum Artikel Zu den Aufgaben

Gewichtskraft

Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Ursache der Gewichtskraft eines Körpers ist die Anziehung zwischen der Erde und dem Körper.
  • Aufgrund seiner Gewichtskraft erfährt jeder Körper eine Beschleunigung in Richtung Erdboden, die sogenannte Fallbeschleunigung.
  • Die Fallbeschleunigung hat auf der Erde den Wert \(g=9{,}81\,\rm{\frac{m}{s^2}}\), auf anderen Himmelskörpern andere Werte.
  • Für die Gewichtskraft \(\vec F_{\rm{G}}\) gilt \(\vec{F}_{\rm{G}}=m\cdot g\).

Zum Artikel Zu den Aufgaben

Statische Kraftmessung

Grundwissen

  • Mithilfe eines statischen Kraftmessers wie einer Federwaage kannst du einfach die Massen unbekannter Körper bestimmen.
  • Ein statischer Kraftmesser muss jedoch immer mit bekannten Massen kalibriert werden.
  • Beim Messen mit dem Kraftmesser ist auf die Nullpunktkorrektur zu achten.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mithilfe eines statischen Kraftmessers wie einer Federwaage kannst du einfach die Massen unbekannter Körper bestimmen.
  • Ein statischer Kraftmesser muss jedoch immer mit bekannten Massen kalibriert werden.
  • Beim Messen mit dem Kraftmesser ist auf die Nullpunktkorrektur zu achten.

Zum Artikel Zu den Aufgaben