Suchergebnis für:
TORRICELLI-Gleichung
Grundwissen
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
Grundwissen
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
Dynamischer Auftrieb und \(c_{\rm{A}}\)-Wert
Grundwissen
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
Grundwissen
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
Strömungswiderstand und \(c_{\rm{w}}\)-Wert
Grundwissen
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
Grundwissen
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
Energie und ihre Eigenschaften
Grundwissen
- Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
- Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
- Energieumwandlung: Energie kann von einer Form in eine andere Form umgewandelt werden.
- Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
- Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.
Grundwissen
- Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
- Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
- Energieumwandlung: Energie kann von einer Form in eine andere Form umgewandelt werden.
- Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
- Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.
Wirkung einer Kraft als Zentripetalkraft
Grundwissen
- Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
- Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.
Grundwissen
- Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
- Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.
Schräger Wurf nach oben ohne Anfangshöhe
Grundwissen
- Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
- In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
- In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
- Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0 \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).
Grundwissen
- Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
- In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
- In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
- Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0 \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).
Zentripetalkraft als resultierende Kraft
Grundwissen
- Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
- Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
- Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
- Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.
Grundwissen
- Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
- Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
- Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
- Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.
Kreisbewegung unter Einfluss zusätzlicher Kräfte
Grundwissen
- In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
- Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
- Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.
Grundwissen
- In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
- Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
- Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.
Zentripetalbeschleunigung
Grundwissen
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.
Grundwissen
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
- Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.
Stehende Wellen - Typen
Grundwissen
- Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
- Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
- Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen
Grundwissen
- Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
- Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
- Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen
Transmission und Reflexion
Grundwissen
- Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
- Beim Übergang einer Welle vom dichteren zum dünneren Medium läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).
Grundwissen
- Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
- Beim Übergang einer Welle vom dichteren zum dünneren Medium läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).
Wurf nach oben mit Anfangshöhe
Grundwissen
- Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
- Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
- Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
- Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).
Grundwissen
- Als Wurf nach oben mit Anfangshöhe bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer Anfangsgeschwindigkeit \(\vec v_0\) "senkrecht nach oben geworfen" wird.
- Der Körper führt dann eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
- Für die Steigzeit des Körpers gilt \(t_{\rm{S}}=\frac{v_{y,0}}{g}\), für die Wurfhöhe \({y_{\rm{S}}} = \frac{{v_{y,0}^2}}{{2 \cdot g}} + h\).
- Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt{{v_{y,0}}^2 + 2 \cdot g \cdot h}}{g}\).
Schräger Wurf nach unten
Grundwissen
- Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
- Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
- Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).
Grundwissen
- Als Schrägen Wurf nach unten bezeichnen wir die Bewegung eines Körpers, der aus einer Anfangshöhe \(h\) mit einer schräg nach unten gerichteten Anfangsgeschwindigkeit \(\vec v_0\) "geworfen" wird.
- Der Körper führt dann in horizontaler Richtung eine gleichförmige Bewegung und in vertikaler Richtung eine gleichmäßig beschleunigte Bewegung mit Anfangsgeschwindigkeit aus.
- Für die Wurfzeit des Körpers gilt \(t_{\rm{W}} = \frac{v_{y,0} + \sqrt {{v_{y,0}}^2 + 2 \cdot g \cdot h} }{g}\). Beachte: \(v_{y,0}<0\).
Spektren
Grundwissen
- Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
- Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
- Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
- Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.
Grundwissen
- Untersucht man Licht mit Hilfe eines Spektralapparats, so erhält man ein sogenanntes Spektrum. Aus diesen Spektren kann man vielfältige Informationen über den Aufbau von Atomen gewinnen.
- Das Spektrum von Licht, das ein heißer Körper aussendet, bezeichnet man als Emissionsspektrum. Beim Spektrum einer Glühlampe gehen die einzelnen Farben fließend ineinander über. Man spricht von einem kontinuierlichen Emissionsspektrum. Das Spektrum eines heißen Gases dagegen besteht aus einzelnen, voneinander getrennten dünnen Linien. Man spricht von einem diskreten Emissionsspektrum (Linienspektrum).
- Das Spektrum von ursprünglich "weißem" Licht, das einen Gegenstand wie z.B. ein heißes Gas durchlaufen hat, bezeichnet man als Absorptionsspektrum. Absorptionsspektren sind durch dunkle Linien im kontinuierlichen Spektrum des "weißen" Lichts gekennzeichnet.
- Die Lage der Spektrallinien in einem Spektrum ist charakteristisch für das Atom bzw. Molekül.
Atommodell von BOHR
Grundwissen
- BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
- Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!
Grundwissen
- BOHR versucht die die zentralen Probleme des Rutherford-Modells (Stabilität und quantenhafte Emission und Absorption) mit drei Postulaten zu lösen.
- Die mit den drei Postulaten verbundene Vorstellung um den Kern kreisender Elektronen ist jedoch nicht haltbar!
Gesetz von MOSELEY
Grundwissen
- Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
- Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)
Grundwissen
- Das Gesetz von MOSELEY beschreibt einen Zusammenhang zwischen der Wellenlänge der \(K_{\alpha}\)-Strahlung und der Ordnungszahl \(Z\) des Anodenmaterials.
- Das Gesetz von MOSELEY lautet \(\frac{1}{{{\lambda _{{K_{\alpha}}}}}} = {\left( {Z - 1} \right)^2} \cdot {R_\infty } \cdot \frac{3}{4}\)
Bestimmung der AVOGADRO-Konstante durch RÖNTGEN-Spektroskopie
Grundwissen
- Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
- Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
- Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.
Grundwissen
- Kennst du die Dichte, die Struktur und den Aufbau (Netzebenenabstand) eines Kristalls, so kannst du die AVOGADRO-Konstante bestimmen
- Den Netzebenenabstand eines Einkristalls bestimmt man mittels RÖNTGEN-Spektroskopie
- Die Elementarzelle eines einfachen kubischen Einkristalls ist ein Würfel. Jeder Elementarzelle wird hier genau ein Teilchen zugeordnet.
Wechselwirkung ungleich Gleichgewicht
Grundwissen
- Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
- Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
- Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.
Grundwissen
- Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
- Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
- Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.
Wellen
Grundwissen
- Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
- Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
- Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.
Grundwissen
- Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
- Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
- Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.
Atomare Größen
Grundwissen
- Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
- Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
- \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
- Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).
Grundwissen
- Die absolute Atommasse \(m_{\rm{A}}\left(X\right)\) ist die Masse eines Atoms in \(\rm{kg}\).
- Die Atomare Masseneinheit u hat den Wert \(1{,}66054 \cdot {10^{ - 27}}\,\rm{kg}\).
- \(1\,\rm{mol}\) eines Stoffes besteht aus \(6{,}02214 \cdot {{10}^{23}}\) Einzelteilchen.
- Die AVOGADRO-Konstante \(N_A\) beträgt \(6{,}02214\cdot 10^{23}\,\rm{mol}^{-1}\).
Bremsstrahlung
Grundwissen
- In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
- Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
- Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.
Grundwissen
- In der Anode der Röntgenröhre werden die auftreffenden schnellen Elektronen stark abgebremst. Dabei entsteht die Bremsstrahlung.
- Die Elektronen werden im Anodenmaterial je nach Abstand zu einem Kern unterschiedlich stark beschleunigt, entsprechend enthält das Spektrum der Bremsstrahlung alle Photonenenergien bis zum Höchstwert.
- Die Bremsstrahlung einer Röntgenröhre ist ein kontinuierliches Spektrum. Die maximale Photonenenergie bzw. die untere Grenzwellenlänge der Photonen wird dabei von der Beschleunigungsspannung bestimmt.
Ablesen von Kraftmessern
Grundwissen
- Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
- Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt.
Grundwissen
- Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
- Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt.
Federpendel
Grundwissen
- Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
- Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.
Grundwissen
- Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
- Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.
Charakterisierung der gleichförmigen Bewegung
Grundwissen
- Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
- Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
- Es gilt \(s=v\cdot t\)
Grundwissen
- Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
- Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
- Es gilt \(s=v\cdot t\)
Geschwindigkeit bei gleichförmiger Bewegung
Grundwissen
- Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
- Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
- Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)
Grundwissen
- Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
- Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
- Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)
Mittlere Geschwindigkeit
Grundwissen
- Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
- Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)
Grundwissen
- Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
- Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)
Beschleunigte Bewegung
Grundwissen
- Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers
Grundwissen
- Bei einer beschleunigten Bewegung ändert sich die Geschwindigkeit des Körpers
Charakterisierung der gleichmäßig beschleunigten Bewegung
Grundwissen
- Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
- Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.
Grundwissen
- Die Zeit-Weg-Funktion einer gleichmäßig beschleunigten Bewegung ist eine quadratische Funktion, der Zeit-Weg-Graph also eine Parabel und eine Verdopplung der Zeit führt zu einer Vervierfachung des zurückgelegten Weges.
- Die Zeit-Geschwindigkeits-Funktion einer gleichmäßig beschleunigten Bewegung ist eine lineare Funktion, der Zeit-Geschwindigkeits-Graph also eine Gerade und eine Verdopplung der Zeit führt zu einer Verdopplung der Geschwindigkeit.
Beschleunigung bei gleichmäßig beschleunigter Bewegung
Grundwissen
- Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
- Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
- Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)
Grundwissen
- Je größer der Öffnungsfaktor der Parabel im Zeit-Weg-Graph, desto größer ist die Beschleunigung des Körpers.
- Je steiler der Zeit-Geschwindigkeits-Graph, desto größer ist die Beschleunigung des Körpers.
- Für die Beschleunigung \(a\) aus der Ruhe heraus gilt: \(a=\frac{v}{t}\)
Mittlere Beschleunigung
Grundwissen
- Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
- Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)
Grundwissen
- Die mittlere Beschleunigung \(\bar{a}\) (Durchschnittsbeschleunigung) ermöglicht den Vergleich von nicht gleichmäßigen Beschleunigungen.
- Wenn die Bewegung bei \(t=0\) aus der Ruhe beginnt, gilt für die mittlere Beschleunigung \(\bar{a}=\frac{v}{t}\)