Direkt zum Inhalt
Suchergebnisse 1 - 30 von 763

TORRICELLI-Gleichung

Grundwissen

  • Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
  • .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
  • Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf  berechnet werden.

Zum Artikel
Grundwissen

  • Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
  • .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
  • Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf  berechnet werden.

Zum Artikel Zu den Aufgaben

Dynamischer Auftrieb und \(c_{\rm{A}}\)-Wert

Grundwissen

  • Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
  • Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
  •  Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
  • Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
  •  Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.

Zum Artikel Zu den Aufgaben

Strömungswiderstand und \(c_{\rm{w}}\)-Wert

Grundwissen

  • Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
  • Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
  • Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
  • Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
  • Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.

Zum Artikel Zu den Aufgaben

Energie und ihre Eigenschaften

Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine ander Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel
Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine ander Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel Zu den Aufgaben

Wirkung einer Kraft als Zentripetalkraft

Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben

Schräger Wurf ohne Anfangshöhe

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).

Zum Artikel Zu den Aufgaben

Zentripetalkraft als resultierende Kraft

Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben

Kreisbewegung unter Einfluss zusätzlicher Kräfte

Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung

Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben

Stehende Wellen - Typen

Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben

Transmission und Reflexion

Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel
Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel Zu den Aufgaben

Orientierung mit Hilfe des Polarsterns (Nordstern)

Grundwissen

  • Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
  • Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
  • Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.

Zum Artikel Zu den Aufgaben

Entwicklung schwerer Sterne

Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Massereiche Sterne der Hauptreihe kollabieren unter ihrer eigenen Gravitation, wenn im Kern kein Energiegewinn mittels Fusion mehr möglich ist.
  • Neutronensterne besitzen kleine Radien von etwas \(10\) bis \(13\,\rm{km}\) und eine extrem hohe Dichte.
  • Schnell rotierende Neutronensterne können gerichtete Radiostrahlung aussenden, die bei günstiger geometrischer Lage auf der Erde detektiert werden können. Solche Sterne nennt man Pulsare.

Zum Artikel Zu den Aufgaben

Dunkle Materie und Dunkle Energie

Grundwissen

  • Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
  • 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
  • 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.

Zum Artikel
Grundwissen

  • Nur etwa 4,9% der im Universum enthaltenen Masse besteht aus den Standardteilchen der Elementarteilchenphysik
  • 26,8% bestehen aus Dunkler Materie, die zur Masse von Galaxien beiträgt und rein gravitativ wechselwirkt.
  • 68,3% bestehen aus sog. Dunkler Energie die mit negativem Druck einhergeht und bestrebt ist, den Raum auszudehnen.

Zum Artikel Zu den Aufgaben

Kosmologie und Standardmodell

Grundwissen

  • Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
  • Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.

Zum Artikel
Grundwissen

  • Die Kosmologie beschäftigt sich mit dem derzeitigen Aufbau und der zeitlichen Entwicklung, also der Geschichte des Universums
  • Das sog. Standardmodell der Kosmologie ist die anerkannteste Theorie über die Entwicklung des Universums und geht von einem Urknall vor 13,8 Milliarden Jahren aus.

Zum Artikel Zu den Aufgaben

Energie im Gravitationsfeld

Grundwissen

  • Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
  • Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
  • Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
  • Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Arbeit im Gravitationsfeld ist \(W =E_{\rm{pot,End}}-E_{\rm{pot,Anfang}}= - G \cdot m \cdot M \cdot \frac{1}{{{r_E}}} + G \cdot m \cdot M \cdot \frac{1}{{{r_A}}}\)
  • Im freien Weltall besitzen Körper keine potentielle Energie, es gilt: \(E_{\rm{pot,}\infty}=0\).
  • Allgemein gilt für die Fluchtgeschwindigkeit von einem Körper \(v_{\rm{Flucht}}=\sqrt {\frac{{2 \cdot G \cdot M}}{r}}\)
  • Die Fluchtgeschwindigkeit der Erde ist \(v_{\rm Flucht}= 11{,}2\,\rm{\frac{km}{s}}\)

Zum Artikel Zu den Aufgaben

HERTZSPRUNG-RUSSELL-Diagramm

Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Hertzsprung-Russell-Diagramm zeigt grob die Verteilung der Sterne über ihre Entwicklungsstadien.
  • Im Diagramm zeigen sich verschiedene charakteristische Bereiche.
  • An der Position eines Sterns im HRD kann man meist seinen Entwicklungszustand ablesen.

Zum Artikel Zu den Aufgaben

Monat

Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel
Grundwissen

  • Ein synodischer Monat ist die Zeit von einer Mondphase bis zu ihrer Wiederkehr.
  • Ein siderischer Monat ist die Zeit für einen vollen Umlauf des Mondes um die Erde gegenüber dem Sternenhintergrund.

Zum Artikel Zu den Aufgaben

Wechselwirkung ungleich Gleichgewicht

Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel
Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel Zu den Aufgaben

Wellen

Grundwissen

  • Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
  • Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
  • Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.

Zum Artikel
Grundwissen

  • Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
  • Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
  • Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.

Zum Artikel Zu den Aufgaben

Kosmische Hintergrundstrahlung

Grundwissen

  • Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
  • Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
  • Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie. 

Zum Artikel
Grundwissen

  • Diese kosmische Hintergrundstrahlung ist kurz nach dem Urknall entstandene Strahlung im Mikrowellenbereich.
  • Ihr Auftreten stützt das Standardmodell (Urknalltheorie), da sie theoretisch vorhergesagt wurde.
  • Fluktuationen in der Hintergrundstrahlung geben Hinweise auf die Zusammensetzung des Universums aus Materie, Dunkler Materie und Dunkler Energie. 

Zum Artikel Zu den Aufgaben

Himmelskugel

Grundwissen

  • Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
  • Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
  • Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Himmelskugel ist eine scheinbare, den Beobachter allseitig umgebende Kugel mit beliebig großem Radius, auf welche die Gestirne projiziert werden, sodass Positionsangaben möglich sind.
  • Himmelsnordpol, Himmelssüdpol, Himmelsäquator entsprechen ihren irdischen Gegenstücken, sind nur auf die Himmelskugel projiziert.
  • Himmelsdistanzen werden stets in Winkeln angegeben, da ist die Polhöhe \(h_{\rm{P}}\) gleich der geographischen Breite \(\varphi\) des Beobachters und die Äquatorhöhe \(h_{\rm{A}}=90^{\circ}-\varphi \)

Zum Artikel Zu den Aufgaben

Lauf der Gestirne

Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Deklination \(\varphi\) gibt die Höhe über der Äquatorebene an.
  • Die obere Kulmination beschreibt die größte Höhe eines Sterns, die untere Kulmination die geringste Höhe.
  • Sterne, die sich am Beobachtungsort immer über der Horizontebene befinden, nennt man Zirkumpolarsterne.

Zum Artikel Zu den Aufgaben

Sonnenspektrum

Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (Fraunhoferlininen), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das von der Sonne kommende Licht ähnelt dem Spektrum eines schwarzen Körpers.
  • Das Maximum der Strahlung liegt bei etwa \(550\,\rm{nm}\), also im Bereich von blau-grünem Licht.
  • Im Sonnenspektrum zeigen sich viele Absorptionslinien (Fraunhoferlininen), die Rückschlüsse z.B. auf die Zusammensetzung unsere Atmosphäre ermöglichen.

Zum Artikel Zu den Aufgaben

Astronomische Koordinatensysteme

Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für die Orientierung auf der Himmelskugel gibt es zwei unterschiedliche Beschreibungen: das Horizontsystem und das Äquatorialsystem.
  • Das Horizontsystem wird bei Fernrohren genutzt, deren Grundplatte parallel zum Erdboden steht, also azimutal montiert ist.
  • Das Äquatorialsystem wird genutzt, wenn sich das Fernrohr um eine Achse parallel zur Erdachse dreht, also parallaktisch (äquatorial) montiert ist.

Zum Artikel Zu den Aufgaben

Ablesen von Kraftmessern

Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben

Federpendel

Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein horizontal bewegliches Federpendel mit einem Pendelkörper der Masse \(m\) und einer Feder mit der Federkonstante \(D\) schwingt harmonisch mit der Zeit-Ort-Funktion \(x(t) = \hat{x} \cdot \cos \left( {{\omega} \cdot t} \right)\) mit \({\omega} = \sqrt {\frac{D}{m}}\)
  • Die Schwingungsdauer berechnet sich durch \(T = 2\,\pi \cdot \sqrt {\frac{m}{D}}\); sie ist insbesondere unabhängig von der Amplitude \(\hat{x} \) der Schwingung.

Zum Artikel Zu den Aufgaben

Charakterisierung der gleichförmigen Bewegung

Grundwissen

  • Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
  • Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
  • Es gilt \(s=v\cdot t\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei gleichförmiger Bewegung wird in doppelter Zeit die doppelte Strecke zurückgelegt usw.
  • Der Zeit-Weg-Graph einer gleichförmigen Bewegung ist eine Ursprungsgerade
  • Es gilt \(s=v\cdot t\)

Zum Artikel Zu den Aufgaben

Geschwindigkeit bei gleichförmiger Bewegung

Grundwissen

  • Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
  • Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
  • Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Geschwindigkeit einer gleichförmigen Bewegung ist konstant.
  • Für die Geschwindigkeit einer gleichförmigen Bewegung gilt \(v=\frac{s}{t}\)
  • Die Einheit der Geschwindigkeit ist \([v]=1\,\rm{\frac{m}{s}}\)

Zum Artikel Zu den Aufgaben

Mittlere Geschwindigkeit

Grundwissen

  • Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
  • Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei nicht gleichförmigen Bewegungen kann man die mittlere Geschwindigkeit (Durchschnittsgeschwindigkeit) angeben.
  • Für die mittlere Geschwindigkeit \(\bar{v}\) in einer Zeitspanne \(t\) gilt: \(\bar{v}=\frac{s}{t}\)

Zum Artikel Zu den Aufgaben