Direkt zum Inhalt
Suchergebnisse 1 - 30 von 2101

TORRICELLI-Gleichung

Grundwissen

  • Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
  • .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
  • Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf  berechnet werden.

Zum Artikel
Grundwissen

  • Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
  • .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
  • Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf  berechnet werden.

Zum Artikel Zu den Aufgaben

Dynamischer Auftrieb und \(c_{\rm{A}}\)-Wert

Grundwissen

  • Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
  • Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
  •  Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
  • Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
  •  Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.

Zum Artikel Zu den Aufgaben

Strömungswiderstand und \(c_{\rm{w}}\)-Wert

Grundwissen

  • Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
  • Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
  • Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
  • Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
  • Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.

Zum Artikel Zu den Aufgaben

Gefahr durch Strom und Körperwiderstand

Grundwissen

  • Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
  • Wechselstrom ist gefährlicher als Gleichstrom.
  • Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
  • Wechselstrom ist gefährlicher als Gleichstrom.
  • Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.

Zum Artikel Zu den Aufgaben

Zerfallsgesetz, Zerfallskonstante und Halbwertszeit

Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben

Auswerten von Zerfallskurven

Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

20 Jahre LEIFIphysik: Physikunterricht zum Wettbewerb

Grundwissen

Der LEIFIphysik-Fotowettbewerb ist eine gute Gelegenheit, um über Physik in der Welt um uns herum zu sprechen und diese im Rahmen eines physikalischen Spaziergangs zu entdecken. Das geht auch direkt im Physikunterricht. Auf dieser Seite findet sich ein Vorschlag zum Ablauf.

Zum Artikel
Grundwissen

Der LEIFIphysik-Fotowettbewerb ist eine gute Gelegenheit, um über Physik in der Welt um uns herum zu sprechen und diese im Rahmen eines physikalischen Spaziergangs zu entdecken. Das geht auch direkt im Physikunterricht. Auf dieser Seite findet sich ein Vorschlag zum Ablauf.

Zum Artikel Zu den Aufgaben

Auswerten von Absorptionskurven

Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel
Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Energie und ihre Eigenschaften

Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine ander Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel
Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine ander Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel Zu den Aufgaben

Elektrizität und Ladung

Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
  • Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
  • Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
  • Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.

Zum Artikel Zu den Aufgaben

Auftreten von Induktion

Grundwissen

  • Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
  • Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
  • Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
  • Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
  • Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.

Zum Artikel Zu den Aufgaben

Zusammenhang von Induktion und LORENTZ-Kraft

Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
  • Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
  • Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
  • Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar

Zum Artikel Zu den Aufgaben

Induktionsstrom und Regel von Lenz

Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel
Grundwissen

  • Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
  • Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.

Zum Artikel Zu den Aufgaben

Wirkung einer Kraft als Zentripetalkraft

Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben

Potentialtopfmodell (Fermi-Gas-Modell)

Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel
Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel Zu den Aufgaben

Schräger Wurf ohne Anfangshöhe

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).

Zum Artikel Zu den Aufgaben

Influenz und Polarisation

Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
  • In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
  • In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.

Zum Artikel Zu den Aufgaben

Zentripetalkraft als resultierende Kraft

Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben

Kreisbewegung unter Einfluss zusätzlicher Kräfte

Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung

Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben

Elektrische Kraft

Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
  • Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
  • Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.

Zum Artikel Zu den Aufgaben

Elektrische Ladung und die Einheit Coulomb

Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel
Grundwissen

  • Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
  • Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
  • Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
  • Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).

Zum Artikel Zu den Aufgaben

Zusammenfassen von Proportionalitäten

Grundwissen
Grundwissen

SI-Basisgrößen und -einheiten

Grundwissen
Grundwissen

Speicherung von Energie

Grundwissen
Grundwissen

Innenwiderstand von Quellen

Grundwissen

  • Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
  • Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
  • Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)

Zum Artikel Zu den Aufgaben

Orientierung mit Hilfe des Polarsterns (Nordstern)

Grundwissen

  • Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
  • Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Polarstern steht nahe des Himmelsnordpols und lässt sich daher zur Bestimmung der geographischen Nordrichtung nutzen
  • Die Höhe \(h\) des Polarsterns über dem Horizont ist gleich der geographischen Breite \(\varphi\) des Beobachters.

Zum Artikel Zu den Aufgaben

Lösen von Gleichungen - Fortführung

Grundwissen
Grundwissen