Suchergebnis für:
Zerfallsgesetz, Zerfallskonstante und Halbwertszeit
Grundwissen
- Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
- Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda \cdot t}} = \lambda \cdot {N_0} \cdot {e^{ - \lambda \cdot t}}\).
- Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
- Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).
Grundwissen
- Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
- Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda \cdot t}} = \lambda \cdot {N_0} \cdot {e^{ - \lambda \cdot t}}\).
- Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
- Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).
Auswerten von Zerfallskurven
Grundwissen
- Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
- Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.
Grundwissen
- Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
- Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.
Auswerten von Absorptionskurven
Grundwissen
- Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
- Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.
Grundwissen
- Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
- Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.
Potentialtopfmodell (Fermi-Gas-Modell)
Grundwissen
- Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
- Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
- Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.
Grundwissen
- Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
- Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
- Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.
Fusionswahrscheinlichkeit
Grundwissen
- Protonen müssen genug Energie besitzen, um die Coulombkräfte zu überwinden, um fusionieren zu können.
- Trotz der hohen Temperatur in der Sonne besitzen auch hier nicht genug Protonen genug Energie.
- Der Tunneleffekt im quantenmechanischen Modell erklärt, warum dennoch ausreichend Kernfusionen stattfinden.
Grundwissen
- Protonen müssen genug Energie besitzen, um die Coulombkräfte zu überwinden, um fusionieren zu können.
- Trotz der hohen Temperatur in der Sonne besitzen auch hier nicht genug Protonen genug Energie.
- Der Tunneleffekt im quantenmechanischen Modell erklärt, warum dennoch ausreichend Kernfusionen stattfinden.
Ionisierende Strahlung in Chemie und Biologie
Grundwissen
- Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
- Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
- Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.
Grundwissen
- Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
- Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
- Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.
Ionisierende Strahlung in der Medizin
Grundwissen
- Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
- Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
- Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.
Grundwissen
- Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
- Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
- Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.
Ionisierende Strahlung in der Technik
Grundwissen
- Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
- Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.
Grundwissen
- Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
- Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.
Streuexperiment
Grundwissen
- Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
- Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
- Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.
Grundwissen
- Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
- Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
- Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.
Kernkraft
Grundwissen
- Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis \(2{,}5\,\rm{fm}\), für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
- Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
- Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.
Grundwissen
- Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis \(2{,}5\,\rm{fm}\), für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
- Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
- Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.
Energiebilanz bei Kernreaktionen
Grundwissen
- Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
- Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
- Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)
Grundwissen
- Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
- Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
- Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)
Kettenreaktion
Grundwissen
- Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
- Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
- Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
- Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.
Grundwissen
- Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
- Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
- Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
- Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.
Nuklidkarte
Grundwissen
- Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
- Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich
Grundwissen
- Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
- Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich
Kennzahlen von Kernen
Grundwissen
- Die Kernladungszahl \(Z\) gibt die Zahl der Protonen in einem Kern an.
- Die Summe aus Protonenzahl \(Z\) und Neutronenzahl \(N\) eines Atomkerns ergibt seine Massezahl \(A\).
- In Elementschreibweise notiert man \({^{A\!}_{Z\!}X}\).
Grundwissen
- Die Kernladungszahl \(Z\) gibt die Zahl der Protonen in einem Kern an.
- Die Summe aus Protonenzahl \(Z\) und Neutronenzahl \(N\) eines Atomkerns ergibt seine Massezahl \(A\).
- In Elementschreibweise notiert man \({^{A\!}_{Z\!}X}\).
Energiebilanz beim Beta-Plus-Zerfall
Grundwissen
- Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
- Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
- Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)
Grundwissen
- Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
- Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
- Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)
Energiebilanz beim EC-Prozess oder K-Einfang
Grundwissen
- Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
- Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
- Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)
Grundwissen
- Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
- Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
- Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)
Kurzer Überblick: Was ist Teilchenphysik?
Grundwissen
- Teilchenphysik ist ein relativ junger Teilbereich der Physik
- Teilchenphysik beschäftigt sich mit den elementaren Bausteinen der Materie, den sog. Elementarteilchen.
- Teilchenphysik untersucht, wie die Elementarteilchen miteinander wechselwirken.
Grundwissen
- Teilchenphysik ist ein relativ junger Teilbereich der Physik
- Teilchenphysik beschäftigt sich mit den elementaren Bausteinen der Materie, den sog. Elementarteilchen.
- Teilchenphysik untersucht, wie die Elementarteilchen miteinander wechselwirken.
Das Prinzip der Vereinfachung
Grundwissen
- Ein Ziel der modernen Physik ist eine einheitliche Theorie zur Beschreibung aller Phänomene in der Welt zu finden.
- Dazu werden schrittweise Theorien wie z.B. die Fallgesetze auf der Erde und die Bewegung der Planeten mit einer einheitlichen Theorie beschrieben, hier der universellen Gravitation.
Grundwissen
- Ein Ziel der modernen Physik ist eine einheitliche Theorie zur Beschreibung aller Phänomene in der Welt zu finden.
- Dazu werden schrittweise Theorien wie z.B. die Fallgesetze auf der Erde und die Bewegung der Planeten mit einer einheitlichen Theorie beschrieben, hier der universellen Gravitation.
Symmetrien und Erhaltungssätze
Grundwissen
- Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
- Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
- Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.
Grundwissen
- Bei jeder Umwandlung von Teilchen oder jedem Wechselwirkungsprozess sind die elektrische, die starke Ladung und meistens auch die schwache Ladung erhalten.
- Es gibt bei der schwachen Ladung nur wenige Ausnahmen, die alle mit dem Higgs-Teilchen oder Higgs-Feld zu tun haben.
- Den Zusammenhang zwischen Erhaltungsgrößen und Symmetrien beschreibt das NOETHER-Theorem.
Das Standardmodell der Teilchenphysik
Grundwissen
- Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
- Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.
Grundwissen
- Das Standardmodell der Teilchenphysik ist die aktuelle Theorie zur Beschreibung von subatomaren Vorgängen.
- Das Standardmodell basiert auf Symmetrien, sog. lokalen Eichsymmetrien, die die Flexibilität der Natur gut beschreiben.
Die vier fundamentalen Wechselwirkungen
Grundwissen
- Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
- Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
- Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.
Grundwissen
- Die vier fundamentalen Wechselwirkungen sind die starke Wechselwirkung, die schwache Wechselwirkung, die elektromagnetische Wechselwirkung und die Gravitation.
- Für das Standardmodell spielt die Gravitation zunächst keine zentrale Rolle.
- Zu jeder Wechselwirkung gehört eine eigene Ladung, deren Wert angibt, wie sensitiv ein Teilchen für diese Wechselwirkung ist.
Elementarteilchen
Grundwissen
- Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
- Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
- Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.
Grundwissen
- Die Elementarteilchen der Materie können gut in 3 Spalten, als Generationen bezeichnet, und 3 Zeilen eingeteilt werden.
- Teilchen der 1. Generation sich up- und down-Quark, Elektron und Elektron-Neutrino und somit die Teilchen, die mit denen man normal in Berührung kommt. Die Teilchen der 2. und 3. Generation treten nur unter extremen Bedingungen auf.
- Die elektrisch neutralen Leptonen in der ersten Reihe unterliegen nur der schwachen Wechselwirkung, geladene Leptonen in der zweiten Reihe auch der elektromagnetischen Wechselwirkung und Quarks in der dritten Reihe auch der starken Wechselwirkung.
Masse-Energie-Beziehung
Grundwissen
- Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
- Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
- Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)
Grundwissen
- Bei der Kernspaltung und der Kernfusion tritt ein Massendefekt \(\Delta m\) auf: Die Gesamtmasse vor der Spaltung bzw. Fusion entspricht nicht der Gesamtmasse danach.
- Der Massendefekt berechnet sich mit \(\Delta m =m_{\rm{vor}}-m_{\rm{nach}}\).
- Nach Einstein sind Masse und Energie hier gleichwertig (äquivalent) und es gilt die Beziehung \(\Delta E=\Delta m\cdot c^2\)
Möglichkeiten der Kernfusion
Grundwissen
- Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
- Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
- Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.
Grundwissen
- Verschiedene Atomkern können unter geeigneten Bedingungen miteinander fusionieren.
- Die fusionierenden Atomkerne bestimmen, wie groß die frei werdende Energie ist.
- Damit es zur Fusion kommen kann, müssen die elektrostatischen Abstoßungskräfte der Kerne überwunden werden.
Teilchen und Anti-Teilchen
Grundwissen
- Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
- Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
- Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um.
- Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.
Grundwissen
- Zu jedem Materieteilchen gibt es ein Anti-Teilchen mit exakt der entgegengesetzten elektrischen, starken und schwachen Ladung.
- Anti-Teilchen werden meist mit einem Querstrich über dem Teilchensymbol gekennzeichnet.
- Trifft ein Materieteilchen auf sein Anti-Teilchen annihilieren sich beide (Paarvernichtung) - die vorhandene Energie wandelt sich in Botenteilchen um.
- Die Paarerzeugung kann nur unter bestimmten Rahmenbedingungen stattfinden, z.B. im Coulomb-Feld eines Atomkerns.
Zusammenhang von Atom- und Kernmassen
Grundwissen
- Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
- Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
- Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)
Grundwissen
- Die Atommasse \(m_{\rm{A}}\) unterscheidet sich von der Kernmasse \(m_{\rm{K}}\) um die Summe der Ruhemassen der im Atom gebundenen Elektronen und um die Bindungsenergie der Elektronen in der Atomhülle.
- Die gesamte Elektronenbindungsenergie wird abgeschätzt mit \(B_{\rm{e}} = 15{,}73\,\rm{eV} \cdot Z^{\textstyle{7 \over 3}}\)
- Oft reicht die näherungsweise Berechnung der Kernmasse mittels \(m_{\rm{K}}\left( \rm{X} \right) \approx m_{\rm{A}}\left( \rm{X} \right) - Z \cdot m_{\rm{e}}\)
Altersbestimmung mit der Radiocarbonmethode
Grundwissen
- C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotope hat.
- Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
- Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\) das Alter der Probe berechnet werden.
Grundwissen
- C‑14 ist ein natürliches radioaktives Kohlenstoffisotop, dass in jedem lebenden Organismus einen festen Anteil an allen Kohlenstoffisotope hat.
- Stirbt ein Organismus ab, so nimmt ab diesem Zeitpunkt der C‑14-Anteil entsprechend des Zerfallsgesetzes ab \(T_{1/2}\left(\text{C-14}\right)=5730\,\rm{a}\).
- Aus dem verbleibenden C‑14-Anteil bzw. der entsprechenden Aktivität kann mit \(t = \frac{{\ln \left( {\frac{{N(t)}}{{N\left( 0 \right)}}} \right) \cdot {T_{1/2}}}}{{ - \ln (2)}}\) das Alter der Probe berechnet werden.
GEIGER-MÜLLER-Zählrohr
Grundwissen
- Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
- Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
- Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.
Grundwissen
- Ein Geiger-Müller-Zählrohr (umgangssprachlich häufig Geigerzähler genannt) ist ein robustes Nachweisgerät für ionisierende Strahlung.
- Mit Geiger-Müller-Zählrohren können \(\alpha\)- und \(\beta\)-Strahlung besonders gut nachgewiesen werden, \(\gamma\)-Strahlung wird jedoch nur zu einem kleinen Teil registriert.
- Ein Geiger-Müller-Zählrohr wird meist an einen Digitalzähler oder einen Lautsprecher angeschlossen.
Tröpfchenmodell des Atomkerns
Grundwissen
- Das Tröpfchenmodell geht von einer konstanten Materiedichte im Kern ähnlich wie bei einen Flüssigkeitstropfen aus.
- Die Ruhemasse eines Kerns kann mit \({m_{{\rm{K}}{\rm{,0}}}} = Z \cdot {m_{p,0}} + N \cdot {m_{n,0}} - \frac{B}{{{c^2}}}\) berechnet werden, wobei \(B\) die Bindungsenergie ist.
- Die Bindungsenergie setzt sich unter anderem aus der Volumenenergie, der Oberflächenenergie und der Coulomb-Energie zusammen.
Grundwissen
- Das Tröpfchenmodell geht von einer konstanten Materiedichte im Kern ähnlich wie bei einen Flüssigkeitstropfen aus.
- Die Ruhemasse eines Kerns kann mit \({m_{{\rm{K}}{\rm{,0}}}} = Z \cdot {m_{p,0}} + N \cdot {m_{n,0}} - \frac{B}{{{c^2}}}\) berechnet werden, wobei \(B\) die Bindungsenergie ist.
- Die Bindungsenergie setzt sich unter anderem aus der Volumenenergie, der Oberflächenenergie und der Coulomb-Energie zusammen.
Bindungsenergie
Grundwissen
- Die Bindungsenergie \(B\) ist die beim Zusammenbau eines Kerns aus seinen Einzelbausteinen freiwerdende Energie.
- Die mittlere Bindungsenergie pro Nukleon hat den Wert \(\frac{B}{A}\)
- Eisen besitzt die größte Bindungsenergie pro Nukleon.
Grundwissen
- Die Bindungsenergie \(B\) ist die beim Zusammenbau eines Kerns aus seinen Einzelbausteinen freiwerdende Energie.
- Die mittlere Bindungsenergie pro Nukleon hat den Wert \(\frac{B}{A}\)
- Eisen besitzt die größte Bindungsenergie pro Nukleon.