Direkt zum Inhalt
Suchergebnisse 1 - 30 von 140

Zerfallsgesetz, Zerfallskonstante und Halbwertszeit

Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben

Auswerten von Zerfallskurven

Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Auswerten von Absorptionskurven

Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel
Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Potentialtopfmodell (Fermi-Gas-Modell)

Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel
Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel Zu den Aufgaben

Optische Geräte

Grundwissen

  • Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
  • Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
  • Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Wichtige optische Geräte sind Lupe, Fernrohr, Mikroskop und Fotoapparat.
  • Beim Fernrohr wird zwischen Kepler- und Galilei-Fernrohr unterschieden.
  • Häufig ist die Vergrößerung \(V\) eines optischen Gerätes von besonderem Interesse.

Zum Artikel Zu den Aufgaben

Ultraviolett

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(380\,{\rm nm}\) und \(1\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(789\,{\rm THz}\) bis \(300\,{\rm PHz}\)
  • Anwendungen: Schwarzlichtlampen, Geldscheinprüfung, Härtung von Klebstoffen

Zum Artikel Zu den Aufgaben

Röntgenstrahlung

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
  • Anwendungen: Röntgengeräte, Computertomographen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm nm}\) und \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: von \(3\cdot 10^{17}\,{\rm Hz}\) bis \(3\cdot 10^{19}\,{\rm Hz}\)
  • Anwendungen: Röntgengeräte, Computertomographen

Zum Artikel Zu den Aufgaben

Gammastrahlung

Grundwissen

  • Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
  • Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: kleiner als \(10\,{\rm pm}\)
  • Größenordnung der Frequenz: größer als \(3\cdot 10^{19}\,{\rm Hz}\)
  • Auftreten: radioaktiver Zerfall, Umwandlungsreaktionen von Elementarteilchen

Zum Artikel Zu den Aufgaben

Fusionswahrscheinlichkeit

Grundwissen

  • Protonen müssen genug Energie besitzen, um die Coulombkräfte zu überwinden, um fusionieren zu können.
  • Trotz der hohen Temperatur in der Sonne besitzen auch hier nicht genug Protonen genug Energie.
  • Der Tunneleffekt im quantenmechanischen Modell erklärt, warum dennoch ausreichend Kernfusionen stattfinden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Protonen müssen genug Energie besitzen, um die Coulombkräfte zu überwinden, um fusionieren zu können.
  • Trotz der hohen Temperatur in der Sonne besitzen auch hier nicht genug Protonen genug Energie.
  • Der Tunneleffekt im quantenmechanischen Modell erklärt, warum dennoch ausreichend Kernfusionen stattfinden.

Zum Artikel Zu den Aufgaben

Elektromagnetisches Spektrum

Grundwissen

  • Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
  • Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Das elektromagnetische Spektrum erstreckt sich über viele Größenordnungen hinweg.
  • Das sichtbare Licht ist nur ein kleiner Teil des elektromagnetischen Spektrums.

Zum Artikel Zu den Aufgaben

Sichtbares Licht

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(780\,{\rm nm}\) und \(380\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(384\,{\rm THz}\) bis \(789\,{\rm THz}\)

Zum Artikel Zu den Aufgaben

Infrarot

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm mm}\) und \(780\,{\rm nm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm GHz}\) bis \(385\,{\rm THz}\)
  • Anwendungen: Fernbedienungen, Temperaturmessung, Vegetationsbestimmung

Zum Artikel Zu den Aufgaben

Mikrowellen

Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Fund, Mikrowellenherd, Radar

Zum Artikel
Grundwissen

  • Größenordnung der Wellenlänge: zwischen \(1\,{\rm m}\) und \(1\,{\rm mm}\)
  • Größenordnung der Frequenz: von \(300\,{\rm MHz}\) bis \(300\,{\rm GHz}\)
  • Anwendungen: Fund, Mikrowellenherd, Radar

Zum Artikel Zu den Aufgaben

Strahlensatz

Grundwissen

 

Joachim Herz Stiftung

Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]

Zum Artikel Zu den Aufgaben
Grundwissen

 

Joachim Herz Stiftung

Bei einem von einer Punktlichtquelle ausgehendem, divergenten Lichtbündel sind die Entfernung g von der Quelle und die Breite B des Lichtbündels direkt proportional zueinander.\[\frac{B_1}{g_1}=\frac{B_2}{g_2}\qquad \rm{bzw.} \qquad \frac{B}{g}=\rm{const.}\]

Zum Artikel Zu den Aufgaben

Gangunterschied bei zwei Quellen

Grundwissen

  • Zur Berechnung des Gangunterschiedes muss zwischen verschiedenen Fällen unterschieden werden.
  • Bei Reflexion am optisch dichteren Medium muss der Phasensprung berücksichtigt werden.

Zum Artikel
Grundwissen

  • Zur Berechnung des Gangunterschiedes muss zwischen verschiedenen Fällen unterschieden werden.
  • Bei Reflexion am optisch dichteren Medium muss der Phasensprung berücksichtigt werden.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in Chemie und Biologie

Grundwissen

  • Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
  • Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
  • Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.

Zum Artikel
Grundwissen

  • Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
  • Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
  • Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in der Medizin

Grundwissen

  • Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
  • Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
  • Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
  • Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
  • Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in der Technik

Grundwissen

  • Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
  • Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
  • Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.

Zum Artikel Zu den Aufgaben

HERTZsche Versuche

Grundwissen

  • Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
  • Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
  • Bei Licht handelt es sich um eine elektromagnetische Welle.

Zum Artikel
Grundwissen

  • Hertz erzeugte nicht-sichtbare elektromagnetische Wellen mithilfe eines Sendedipols.
  • Die so erzeugten elektromagnetischen Wellen verhalten sich in Bezug auf Reflexion, Brechung und Bündelung ähnlich wie Licht.
  • Bei Licht handelt es sich um eine elektromagnetische Welle.

Zum Artikel Zu den Aufgaben

Streuexperiment

Grundwissen

  • Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
  • Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
  • Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
  • Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
  • Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.

Zum Artikel Zu den Aufgaben

Kernkraft

Grundwissen

  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\), für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\), für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

Energiebilanz bei Kernreaktionen

Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben

Kettenreaktion

Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben

Licht als Teilchen - Vorstellungen von Newton

Grundwissen

  • In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
  • Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
  • Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.

Zum Artikel
Grundwissen

  • In Teilchenvorstellung von Licht besteht das Licht aus winzigen Teilchen (Korpuskeln).
  • Geradlinige Lichtausbreitung und Reflexion können mit dem Modell erklärt werden.
  • Beugung und Interferenz können nicht mithilfe des Modell erklärt werden.

Zum Artikel Zu den Aufgaben

Optischer DOPPLER-Effekt

Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel
Grundwissen

  • Bewegt sich der Sender auf den Empfänger zu, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) kürzer.
  • Bewegt sich der Sender vom Empfänger weg, so ist die vom Empfänger wahrgenommene Wellenlänge \(\lambda'\) länger.
  • Der Effekt führt zur Rot- bzw. Blauverschiebung von Spektren, was genutzt wird, um Planetenbewegungen zu untersuchen.

Zum Artikel Zu den Aufgaben

Nuklidkarte

Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben

Lichtbrechung - Fortführung

Grundwissen

  • Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
  • Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Zusammenhang zwischen Einfallswinkel und Brechungswinkel kann gut grafisch dargestellt werden.
  • Entsprechende Diagramme können in beide Richtungen gelesen werden. Sowohl Übergänge von dicht zu dünn als auch von dünn zu dicht zu dünn können abgelesen werden.

Zum Artikel Zu den Aufgaben

Kennzahlen von Kernen

Grundwissen

  • Die Kernladungszahl \(Z\) gibt die Zahl der Protonen in einem Kern an.
  • Die Summe aus Protonenzahl \(Z\) und Neutronenzahl \(N\) eines Atomkerns ergibt seine Massezahl \(A\).
  • In Elementschreibweise notiert man \({^{A\!}_{Z\!}X}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernladungszahl \(Z\) gibt die Zahl der Protonen in einem Kern an.
  • Die Summe aus Protonenzahl \(Z\) und Neutronenzahl \(N\) eines Atomkerns ergibt seine Massezahl \(A\).
  • In Elementschreibweise notiert man \({^{A\!}_{Z\!}X}\).

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben