Direkt zum Inhalt
Suchergebnisse 1 - 30 von 248

TORRICELLI-Gleichung

Grundwissen

  • Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
  • .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
  • Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf  berechnet werden.

Zum Artikel
Grundwissen

  • Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
  • .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
  • Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf  berechnet werden.

Zum Artikel Zu den Aufgaben

Dynamischer Auftrieb und \(c_{\rm{A}}\)-Wert

Grundwissen

  • Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
  • Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
  •  Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
  • Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
  •  Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.

Zum Artikel Zu den Aufgaben

Strömungswiderstand und \(c_{\rm{w}}\)-Wert

Grundwissen

  • Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
  • Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
  • Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
  • Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
  • Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.

Zum Artikel Zu den Aufgaben

Zerfallsgesetz, Zerfallskonstante und Halbwertszeit

Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda  \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
  • Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda  \cdot t}} = \lambda  \cdot {N_0} \cdot {e^{ - \lambda  \cdot t}}\).
  • Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
  • Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda  = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).

Zum Artikel Zu den Aufgaben

Auswerten von Zerfallskurven

Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Aus Messwerten vom Zerfall eines radioaktiven Präparates kannst du mit verschiedenen Methoden z.B. die Anfangsaktivität \(A_0\), die Zerfallskonstante \(\lambda\) und die Halbwertszeit \(T_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Auswerten von Absorptionskurven

Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel
Grundwissen

  • Aus Messwerten z.B. der Zählrate \(R\) ionisierender Strahlung hinter Absorbern kannst du mit verschiedenen Methoden z.B. die Zählrate \(R_0\) ohne Absorber, den Absorptionskoeffizienten \(\mu\) und die Halbwertsschichtdicke \(d_{1/2}\) bestimmen.
  • Welche Methode du wählst hängt von der Aufgabenstellung und den vorhandenen technischen Hilfsmitteln wie GTR oder Tabellenkalkulation ab.

Zum Artikel Zu den Aufgaben

Energie und ihre Eigenschaften

Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine ander Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel
Grundwissen

  • Energietransport: Energie kann von einem Ort zu einem anderen transportiert werden.
  • Energieübertragung: Energie kann von einem Körper oder einem System auf einen anderen Körper oder ein anderes System übertragen werden.
  • Energieumwandlung: Energie kann von einer Form in eine ander Form umgewandelt werden.
  • Energieerhaltung: Bei der Energieübertragung oder der Energieumwandlung geht keine Energie verloren und kommt keine Energie hinzu.
  • Energieentwertung: Bei jeder Energieübertragung oder Energieumwandlung wird ein Teil der zu Beginn vorhandenen Energie entwertet.

Zum Artikel Zu den Aufgaben

Wirkung einer Kraft als Zentripetalkraft

Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper auf einer Kreisbahn, dann müssen auf den Körper eine oder mehrere Kräfte (z.B. Seilkraft, Haftreibung, Gewichtskraft, Unterlagenkraft, ...) als Zentripetalkraft \(\vec F_{\rm{Z}}\) wirken.
  • Wirkt nur eine einzige Kraft in Richtung des Bahnmittelpunktes, kann diese mit der Zentripetalkraft gleichgesetzt werden.

Zum Artikel Zu den Aufgaben

Potentialtopfmodell (Fermi-Gas-Modell)

Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel
Grundwissen

  • Der Neutronentopf hat am Rand einen horizontalen Potentialverlauf mit Potential Null und einen scharf begrenzten Rand mit Einsetzen der Kernkraft.
  • Beim Protonentopf muss das Coulombpotential berücksichtigt werden, sodass das Potential am Rand positiv und nach außen mit \(\frac{1}{r}\) abfällt.
  • Der Boden des Neutronentopfes liegt energetisch bei ca. \(-46\,\rm{MeV}\), derjenige des Protonentopfes liegt etwas höher, da sich die Protonen im Kern gegenseitig abstoßen.

Zum Artikel Zu den Aufgaben

Schräger Wurf ohne Anfangshöhe

Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nach dem Superpositionsprinzip beeinflussen sich die Bewegungen in \(x\)- und in \(y\)-Richtung gegenseitig nicht, falls Reibungseffekte vernachlässigt werden.
  • In \(x\)-Richtung bewegt sich der Körper gleichförmig mit \(x(t)=v_0 \cdot \cos\left(\alpha_0\right) \cdot t\).
  • In \(y\)-Richtung bewegt sich der Körper gleichmäßig beschleunigt wie beim senkrechten Wurf nach oben ohne Anfangshöhe mit \(y(t)=-\frac{1}{2} \cdot g \cdot t^2 + v_0 \cdot \sin\left(\alpha_0\right) \cdot t\).
  • Die Bahnkurve \(y(x)\) ist eine Parabel mit \(y(x)=-\frac{1}{2}\cdot \frac{g}{{\left( v_0  \cdot \cos\left(\alpha_0\right) \right)}^2} \cdot x^2 +\tan\left(\alpha_0\right) \cdot x\).

Zum Artikel Zu den Aufgaben

Zentripetalkraft als resultierende Kraft

Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bei Kreisbewegungen wirken oft mehrere Kräfte zusammen.
  • Die Gesamtkraft dieser Kräfte muss zum Drehzentrum bzw. einer Drehachse hin gerichtet sein.
  • Die Gesamtkraft dieser Kräfte muss exakt den Betrag \(F_{\rm{Z}}\) haben, der für die Kreisbewegung bei bekannten Werten für \(m\), \(r\) und \(v\) bzw. \(\omega\) benötigt wird.
  • Der Betrag der Gesamtkraft kann durch Vektorielle Addition der einzelnen Kräfte bestimmt werden.

Zum Artikel Zu den Aufgaben

Kreisbewegung unter Einfluss zusätzlicher Kräfte

Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • In manchen Problemstellungen müssen bei der Bestimmung der Zentripetalkraft auch zusätzlich wirkende Kräfte berücksichtigt werden.
  • Je nachdem, in welche Richtung die zusätzliche Kraft wirkt, müssen verschiedene Fälle unterschieden werden.
  • Soll die Kreisbewegung trotz zusätzlich wirkender Kräfte unverändert aufrecht erhalten bleiben, müssen die zusätzlich wirkenden Kräfte entsprechend kompensiert werden.

Zum Artikel Zu den Aufgaben

Zentripetalbeschleunigung

Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn, dann wird der Körper immer zum Drehzentrum hin beschleunigt; diese Beschleunigung bezeichnen wir als Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\).
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Bahngeschwindigkeit \(v\), dann wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = {\frac{v^2}{r}}\) zum Drehzentrum hin beschleunigt.
  • Bewegt sich ein Körper gleichförmig auf einer Kreisbahn mit dem Radius \(r\) mit der Winkelgeschwindigkeit \(\omega\), wird der Körper mit der Zentripetalbeschleunigung \(\vec a_{\rm{ZP}}\) mit dem Betrag \(a_{\rm{ZP}} = \omega^2 \cdot r\) zum Drehzentrum hin beschleunigt.

Zum Artikel Zu den Aufgaben

Stehende Wellen - Typen

Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben
Grundwissen

  • Stehende Wellen mit zwei festen Enden beschreiben u.a. das Schwingen von Saiten.
  • Stehende Wellen mit zwei losen Enden beschreiben u.a. die Tonerzeugung von Blockflöten und offenen Orgelpfeifen
  • Stehende Wellen mit einem festen und einem losen Ende beschreiben u.a. die Tonerzeugung von Panflöten und gedeckten Orgelpfeifen

Zum Artikel Zu den Aufgaben

Transmission und Reflexion

Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel
Grundwissen

  • Beim Übergang einer Welle vom dünneren zum dichteren Medium läuft die ursprüngliche Welle mit kleinerer Amplitude und kleinerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei wird ein Wellenberg zu einem Wellental und ein Wellental zu einem Wellenberg (Reflexion am festen Ende, Phasensprung von \(\pi\)).
  • Beim Übergang einer Welle vom dichteren zum dünneren Medium  läuft die ursprüngliche Welle mit veränderter Amplitude und größerer Wellenlänge weiter. Zusätzlich läuft eine zweite Welle entgegen der ursprünglichen Ausbreitungsrichtung mit kleinerer Amplitude, aber gleicher Wellenlänge zurück. Dabei bleibt ein Wellenberg ein Wellenberg und ein  Wellental ein Wellental (Reflexion am losen Ende, kein Phasensprung).

Zum Artikel Zu den Aufgaben

Fusionswahrscheinlichkeit

Grundwissen

  • Protonen müssen genug Energie besitzen, um die Coulombkräfte zu überwinden, um fusionieren zu können.
  • Trotz der hohen Temperatur in der Sonne besitzen auch hier nicht genug Protonen genug Energie.
  • Der Tunneleffekt im quantenmechanischen Modell erklärt, warum dennoch ausreichend Kernfusionen stattfinden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Protonen müssen genug Energie besitzen, um die Coulombkräfte zu überwinden, um fusionieren zu können.
  • Trotz der hohen Temperatur in der Sonne besitzen auch hier nicht genug Protonen genug Energie.
  • Der Tunneleffekt im quantenmechanischen Modell erklärt, warum dennoch ausreichend Kernfusionen stattfinden.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in Chemie und Biologie

Grundwissen

  • Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
  • Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
  • Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.

Zum Artikel
Grundwissen

  • Ionisierende Strahlung wird zur Schädlingssterilisation und zur Reduzierung der Keimfähigkeit genutzt.
  • Radioaktive Substanzen werden zum Tracing eingesetzt und geben Aufschluss über den Ablauf chemischer und biologischer Prozesse.
  • Ionisierende Strahlung kann die Farbe von Edelsteinen beeinflussen.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in der Medizin

Grundwissen

  • Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
  • Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
  • Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch in der Medizin werden radioaktive Isotope als Tracer eingesetzt (Szintigraphie).
  • Besonders wichtig ist hier die Positronen-Emissions-Tomographie (PET).
  • Radionuklidtherapie kann auch zur Schmerzlinderung eingesetzt werden.

Zum Artikel Zu den Aufgaben

Ionisierende Strahlung in der Technik

Grundwissen

  • Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
  • Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit ionisierender Strahlung können Dicken gemessen, Werkstoffe geprüft und Lecks detektiert werden.
  • Radionuklidbatterien betreiben Herzschrittmacher und werden in der Raumfahrt genutzt.

Zum Artikel Zu den Aufgaben

Wechselwirkung ungleich Gleichgewicht

Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel
Grundwissen

  • Wechselwirkungskräfte und Kräftegleichgewicht dürfen nicht verwechselt werden.
  • Wechselwirkungskräfte greifen immer an zwei unterschiedlichen Körpern an, Kräfte im Gleichgewicht an einem einzigen Körper.
  • Wechselwirkungskräfte treten immer auf, ein Kräftegleichgewicht kann nur vorliegen, muss aber nicht.

Zum Artikel Zu den Aufgaben

Wellen

Grundwissen

  • Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
  • Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
  • Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.

Zum Artikel
Grundwissen

  • Wellen treten in verschiedensten Formen auf: Wasserwellen, Schallwellen, elektromagnetische Wellen
  • Eine Welle ist eine räumliche und zeitliche Zustandsänderung physikalischer Größen, die meist nach bestimmten periodischen Gesetzmäßigkeiten erfolgt.
  • Die Ausbreitung einer Welle ist ein Energietransport, aber kein Materialtransport.

Zum Artikel Zu den Aufgaben

Streuexperiment

Grundwissen

  • Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
  • Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
  • Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Mit Streuexperimenten kann man den Aufbau und die Struktur von kleinsten Teilchen untersuchen.
  • Das zu untersuchende Objekt wir mit schnellen Teilchen beschossen, die am Objekt gestreut werden.
  • Aus der räumlichen Verteilung der gestreuten Teilchen werden Rückschlüsse auf die Struktur des Objektes gezogen.

Zum Artikel Zu den Aufgaben

Kernkraft

Grundwissen

  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\), für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernkraft sorgt bei kleinen Nukleonenabständen von etwa \(0{,}5\,\rm{fm}\) bis  \(2{,}5\,\rm{fm}\), für eine Anziehung der Nukleonen und hält somit den Atomkern zusammen.
  • Die Kernkraft ist wesentlich stärker als die Gravitationswechselwirkung oder die elektromagnetische Wechselwirkung.
  • Für den Radius eines Atomkerns gilt näherungsweise \({{r_k} = 1{,}4 \cdot {10^{ - 15}}\,\rm{m} \cdot \sqrt[3]{A}}\), wo \(A\) die Nukleonenanzahl ist.

Zum Artikel Zu den Aufgaben

Energiebilanz bei Kernreaktionen

Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Der Q-Wert einer Kernreaktion ist die Summe der nach der Kernreaktion vorliegenden kinetischen Energien und der Anregungsenergie \({E^*}\left({\rm{Y}}\right)\) von \(\rm{Y}\) vermindert um die vor der Reaktion vorliegenden kinetischen Energien.
  • Ist der Q-Wert positiv, so ist die Kernreaktion exotherm, ist der Q-Wert negativ, so ist die Kernreaktion endotherm.
  • Der Q-Wert lässt sich berechnen als die Differenz der Ruheenergien vor der Reaktion und der Ruheenergien nach der Reaktion: \(Q = \left( {{m_0}\left( {\rm{x}} \right) \cdot {c^2} + {m_0}\left( {\rm{X}} \right) \cdot {c^2}} \right) - \left( {{m_0}\left( {\rm{y}} \right) \cdot {c^2} + {m_0}\left( {\rm{Y}} \right) \cdot {c^2}} \right)\)

Zum Artikel Zu den Aufgaben

Kettenreaktion

Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Da bei der Spaltung von U‑235 durch Neutronenbeschuss mehrere Neutronen entstehen, ist eine Kettenreaktion möglich.
  • Die bei einer Kernspaltung entstehenden schnellen Neutronen müssen jedoch durch einen Moderator (z.B. Wasser) zu thermischen Neutronen abgebremst werden, damit diese wieder wahrscheinlich genug Urankerne spalten.
  • Um eine Kettenreaktion aufrecht erhalten zu können, ist eine kritische Masse an Spaltmaterial nötig.
  • Eine Kettenreaktion wird z.B. mit Steuerstäben reguliert, die die Zahl der freien Neutronen reduzieren.

Zum Artikel Zu den Aufgaben

Nuklidkarte

Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Nuklidkarte ist ein Ordnungsschema für die Isotope aller Elemente
  • Aus der Nuklidkarte wird die Art des Zerfalls von nicht stabilen Kernen deutlich

Zum Artikel Zu den Aufgaben

Kennzahlen von Kernen

Grundwissen

  • Die Kernladungszahl \(Z\) gibt die Zahl der Protonen in einem Kern an.
  • Die Summe aus Protonenzahl \(Z\) und Neutronenzahl \(N\) eines Atomkerns ergibt seine Massezahl \(A\).
  • In Elementschreibweise notiert man \({^{A\!}_{Z\!}X}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Kernladungszahl \(Z\) gibt die Zahl der Protonen in einem Kern an.
  • Die Summe aus Protonenzahl \(Z\) und Neutronenzahl \(N\) eines Atomkerns ergibt seine Massezahl \(A\).
  • In Elementschreibweise notiert man \({^{A\!}_{Z\!}X}\).

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Plus-Zerfall

Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Plus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Proton in ein Neutron um. Gleichzeitig wird ein \(\beta^+\)-Teilchen (Positron) und ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z-1}^A{\rm{Y}} +\;_{1}^0{\rm{e^+}}+\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-2 \cdot m_{\rm{e}}\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim EC-Prozess oder K-Einfang

Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim EC-Prozess oder K-Einfang wandelt sich im Mutterkern \(\rm{X}\) ein Proton zusammen mit einem Elektron (meist aus der K-Schale) in ein Neutron um. Gleichzeitig wird ein Elektron-Neutrino \(\nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) kleiner als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}} +\;_{-1}^0{\rm{e^-}} \to\;_{Z-1}^A{\rm{Y}} +\;_0^0{\nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Ablesen von Kraftmessern

Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben
Grundwissen

  • Verschiedene Kraftmesser haben einen unterschiedlichen Vollausschlag, z.B. 1N, 2,5N oder 5N.
  • Beachte beim Ablesen von Kraftmessern, welche Kraft ein farblich markierter Abschnitt darstellt. 

Zum Artikel Zu den Aufgaben