Suchergebnis für:
Gefahr durch Strom und Körperwiderstand
Grundwissen
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
Grundwissen
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
Elektrizität und Ladung
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- Ladungen sind die Ursache dafür, dass sich Gegenstände anziehen und abstoßen können.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Auftreten von Induktion
Grundwissen
- Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
- Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
- Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
Grundwissen
- Ändert sich das Magnetfeld, dass eine Spule durchsetzt, so wird in der Spule eine Induktionsspannung induziert.
- Je größer die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
- Je schneller die Änderung des Magnetfeldes, desto größer die Induktionsspannung.
Zusammenhang von Induktion und LORENTZ-Kraft
Grundwissen
- Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
- Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
- Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar
Grundwissen
- Das Auftreten von Induktionsspannungen kann mithilfe der LORENTZ-Kraft erklärt werden
- Ladungstrennung aufgrund von Bewegung von Ladung im Magnetfeld wird als Induktionsspannung messbar
- Wenn sich die vom Magnetfeld durchsetzte Fläche eines Leiterrahmens ändert, wird eine Induktionsspannung messbar
Induktionsstrom und Regel von Lenz
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Influenz und Polarisation
Grundwissen
- Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
- In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
- In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.
Grundwissen
- Eine Folge der Kraftwirkung zwischen elektrischen Ladungen ist die Influenz.
- In elektrischen Leitern bewirkt die Influenz eine Trennung von positiven und negativen Ladungen.
- In Isolatoren bewirkt die Influenz eine Verschiebung von positiven und negativen Ladungen gegeneinander. Dies nennt man Polarisation.
Elektrische Kraft
Grundwissen
- Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
- Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
- Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.
Grundwissen
- Elektrisch geladene Körper üben aufeinander Kräfte aus. Diese Kräfte nennen wir elektrische Kräfte und bezeichnen sie mit \(\vec F_{\rm{el}}\).
- Sind zwei Körper gleichartig geladen, also entweder beide positiv oder beide negativ, dann stoßen sich die Körper gegenseitig ab.
- Sind die Körper dagegen verschiedenartig geladen, also einer positiv und einer negativ, dann ziehen sich die Körper gegenseitig an.
Elektrische Ladung und die Einheit Coulomb
Grundwissen
- Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
- Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
- Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
- Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).
Grundwissen
- Ist ein Körper elektrisch neutral, dann befinden sich in und auf ihm gleich viele Protonen und Elektronen.
- Ist ein Körper negativ geladen, dann befinden sich in und auf ihm mehr Elektronen als Protonen.
- Ist ein Körper positiv geladen, dann befinden sich in und auf ihm mehr Protonen als Elektronen (besser: weniger Elektronen als Protonen).
- Das Formelzeichen für die elektrische Ladung ist \(q\) oder \(Q\), die Maßeinheit der elektrischen Ladung ist \(1\,\rm{C}\) (Coulomb).
Magnetische Flussdichte und die Maßeinheit Tesla
Grundwissen
- Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
- Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
- Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).
Grundwissen
- Befindet sich ein gerader Leiter der Länge \(l\), der von einem Strom der Stärke \(I\) durchflossen wird, senkrecht zu den Feldlinien in einem magnetischen Feld, und wirkt auf diesen Leiter eine magnetische Kraft vom Betrag \(F_{\rm{mag}}\), dann definieren wir die magnetische Flussdichte \(B\) des magnetischen Feldes am Ort des Leiters durch \(B := \frac{F_{\rm{mag}}}{l \cdot I}\).
- Die magnetische Flussdichte \(B\) ist ein Maß für "die Stärke" eines magnetischen Feldes.
- Das Formelzeichen für die magnetische Flussdichte ist \(B\), die Maßeinheit der magnetischen Flussdichte ist \(1\,\rm{T}\) (Tesla).
Innenwiderstand von Quellen
Grundwissen
- Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
- Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)
Grundwissen
- Bei einer belasteten realen Spannungsquelle unterscheiden sich Klemmenspannung \(U_{\rm{kl}}\) und Leerlaufspannung \(U_0\)
- Der Kurzschlussstrom ergibt sich aus \(I_{\rm{max}}=\frac{U_0}{R_{\rm{i}}}\)
Potential und elektrische Spannung
Grundwissen
- Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der negative Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
- Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
- Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.
Grundwissen
- Die Potentialdifferenz \(\Delta {\varphi _{\rm{AB}}}\) ist der negative Quotient aus der Änderung der potentiellen Energie \(\Delta {E_{{\rm{pot}}{\rm{,AB}}}}\) und der Probeladung \(q\).
- Die Potentialdifferenz zwischen zwei Punkten A und B ist die Spannung \(U_{\rm{AB}}\).
- Alle Punkte mit gleichem Potential befinden sich auf einer Äquipotentiallinie.
Magnetische Wirkung des elektrischen Stroms
Grundwissen
- Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
- Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
- Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.
Grundwissen
- Elektrischer Strom besitzt eine magnetische Wirkung, die bei einem einfachen geraden Leiter jedoch sehr schwach ist.
- Wird in eine Spule ein ferromagnetischer Stoff wie Eisen eingebracht, verstärkt sich die magnetische Wirkung sehr deutlich.
- Ein großer Vorteil von Elektromagneten ist, dass ihre magnetische Wirkung beim Abschalten des Stroms nahezu verschwindet.
Atomare Vorstellungen der Elektrizität
Grundwissen
- In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
- Positive Ladung wird oft rot, negative Ladung blau dargestellt.
- Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.
Grundwissen
- In der Modellvorstellung des Kern-Hülle-Modells besteht ein Atom aus einem positiv geladenen Atomkern und negativ geladenen Elektronen in der Atomhülle.
- Positive Ladung wird oft rot, negative Ladung blau dargestellt.
- Bei vielen Phänomenen bewegen sich nur die Elektronen, während die Atomkerne an ihrem Platz bleiben.
LENZsche Regel
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Grundwissen
- Der Induktionsstrom ist stets so gerichtet, dass der Induktionsstrom der Ursache seiner Entstehung entgegenwirkt.
- Die LENZsche Regel ermöglicht einfache Vorhersagen zur Richtung auftretender Induktionsströme.
Magnetischer Fluss und Induktionsgesetz
Grundwissen
- Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
- In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
- Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).
Grundwissen
- Der magnetische Fluss \(\Phi = B \cdot A \cdot \cos\left(\varphi\right)\) ist salopp gesagt das Maß für die "Menge an Magnetfeld, das in einer Induktionsanordnung durch die Leiterschleife fließt".
- In einer Induktionsanordnung kann man am Spannungsmesser in der Induktionsspule immer dann eine Induktionsspannung \(U_{\rm{i}}\) beobachten, wenn sich der magnetische Fluss \(\Phi\) durch die Leiterschleife ändert.
- Der Wert der Induktionsspannung berechnet sich durch \({U_{\rm{i}}} = - \frac{{d\Phi }}{{dt}}\) bzw. für den Fall einer Spule mit \(N\) Windungen als Leiterschleife \({U_{\rm{i}}} = - N \cdot \frac{{d\Phi }}{{dt}}\).
Der Transistor-Effekt
Grundwissen
- Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
- Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.
Grundwissen
- Wenn beim npn-Transistor die Basis genügend positiv gegenüber dem Emitter ist, kann ein Strom über die Kollektor-Emitter-Strecke fließen (Transistor-Effekt).
- Mithilfe eines kleinen Basisstroms kann ein großer Stromfluss zwischen Emitter und Kollektor gesteuert werden.
Transistor-Formalitäten
Grundwissen
- Einfache Transistoren bestehen drei abwechselnd p- und n-dotierten Halbleiterschichten.
- Man unterscheidet zwischen npn-Transistor und pnp-Transistor - meistens behandelt man jedoch npn-Transistoren.
- Die drei Teile nennt man Kollektor (C), Basis (B) und Emitter (E).
- Es gibt drei Schaltungsarten eines Transistors: Emitterschaltung, Kollektorschaltung und Basisschaltung. In der Praxis spielt die Emitterschaltung eine große Rolle.
Grundwissen
- Einfache Transistoren bestehen drei abwechselnd p- und n-dotierten Halbleiterschichten.
- Man unterscheidet zwischen npn-Transistor und pnp-Transistor - meistens behandelt man jedoch npn-Transistoren.
- Die drei Teile nennt man Kollektor (C), Basis (B) und Emitter (E).
- Es gibt drei Schaltungsarten eines Transistors: Emitterschaltung, Kollektorschaltung und Basisschaltung. In der Praxis spielt die Emitterschaltung eine große Rolle.
Ladungseigenschaften
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- In Leitern können sich negative Ladungen relativ frei bewegen.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Grundwissen
- Es gibt zwei unterschiedliche Ladungsarten: positive und negative Ladung.
- Gleichnamige Ladungen stoßen sich gegenseitig ab, ungleichnamige ziehen sich an.
- In Leitern können sich negative Ladungen relativ frei bewegen.
- Eine Folge der Kraftwirkung zwischen Ladungen ist die Influenz.
Elementarladung
Grundwissen
- Die elektrische Ladung ist eine gequantelte Größe
- Die Elementarladung beträgt \(e=1{,}602\,176\,634\cdot 10^{-19}\,\rm{As}\)
- Die Ladung eines Elektrons beträgt \(-e\)
Grundwissen
- Die elektrische Ladung ist eine gequantelte Größe
- Die Elementarladung beträgt \(e=1{,}602\,176\,634\cdot 10^{-19}\,\rm{As}\)
- Die Ladung eines Elektrons beträgt \(-e\)
Elektrizitätslehre - Formeln
Grundwissen
- Hier findest du eine Zusammenstellung der wichtigsten Formeln aus der E-Lehre
Grundwissen
- Hier findest du eine Zusammenstellung der wichtigsten Formeln aus der E-Lehre
Kennlinien von Widerständen
Grundwissen
- Die \(U\)-\(I\)-Kennlinie eines Leiters stellt den Zusammenhang zwischen angelegter Spannung \(U\) und sich ergebender Stromstärke \(I\) dar.
- Die Kennlinien von ohmschen Widerständen sind Ursprungshalbgeraden.
- Wird die \(U\)-\(I\)-Kennlinie eines Leiters mit zunehmender Spannung flacher, so nimmt der Widerstand des Leiters zu, wird sie steiler, so nimmt sein Widerstand ab.
- Mit Hilfe der Kennlinie kannst du auch Spannungen und Ströme bei nicht ohmschen Widerständen ermitteln.
Grundwissen
- Die \(U\)-\(I\)-Kennlinie eines Leiters stellt den Zusammenhang zwischen angelegter Spannung \(U\) und sich ergebender Stromstärke \(I\) dar.
- Die Kennlinien von ohmschen Widerständen sind Ursprungshalbgeraden.
- Wird die \(U\)-\(I\)-Kennlinie eines Leiters mit zunehmender Spannung flacher, so nimmt der Widerstand des Leiters zu, wird sie steiler, so nimmt sein Widerstand ab.
- Mit Hilfe der Kennlinie kannst du auch Spannungen und Ströme bei nicht ohmschen Widerständen ermitteln.
Schaltung von Messgeräten
Grundwissen
- Strommesser werden immer in Reihe geschaltet und müssen einen vernachlässigbaren Innenwiderstand besitzen.
- Spannungsmesser werden immer parallel zu dem Bauteil geschaltet, dessen Spannung bzw. dessen verursachten Spannungsabfall du messen möchtest.
- Spannungsmesser besitzen einen möglichst großen Innenwiderstand.
Grundwissen
- Strommesser werden immer in Reihe geschaltet und müssen einen vernachlässigbaren Innenwiderstand besitzen.
- Spannungsmesser werden immer parallel zu dem Bauteil geschaltet, dessen Spannung bzw. dessen verursachten Spannungsabfall du messen möchtest.
- Spannungsmesser besitzen einen möglichst großen Innenwiderstand.
Widerstand
Grundwissen
- Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
- Kurz: \(R=\frac{U}{I}\)
- Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)
Grundwissen
- Der Widerstand ist der Quotient aus der über dem Leiter abfallenden Spannung und der Stärke des Stroms, die durch den Leiter fließt.
- Kurz: \(R=\frac{U}{I}\)
- Die Einheit des elektrischen Widerstands ist \([R]:=1\,\Omega\,(\text{Ohm})\)
Ein- und Ausschalten von RC-Kreisen
Grundwissen
- Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
- Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).
Grundwissen
- Ladung auf dem Kondensator, Strom im Kreis, und die Spannungen über dem Widerstand und dem Kondensator können beim Ein- und Ausschalten mit Exponentialfunktionen beschrieben werden.
- Für die Halbwertszeit der Größen gilt jeweils \({t_H} = R \cdot C \cdot \ln \left( 2 \right)\).
COULOMB-Gesetz
Grundwissen
- Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
- Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
- Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
- Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.
Grundwissen
- Alle geladenen Körper üben aufeinander Kräfte aus, die man als elektrische Kräfte bezeichnet.
- Die Richtung dieser Kräfte verläuft auf der Verbindungsgerade der beiden Ladungsschwerpunkte, der Betrag dieser Kräfte ist (wegen des Wechselwirkungsgesetzes) gleich groß.
- Die Kräfte sind bei gleichartigen Ladungen voneinander weg und bei verschiedenartigen Ladungen aufeinander zu gerichtet.
- Der Betrag ist proportional zu beiden Ladungen und umgekehrt proportional zum Quadrat des Abstandes der beiden Ladungsschwerpunkte.
Elektrische Stromstärke
Grundwissen
- Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
- Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).
Grundwissen
- Die elektrische Stromstärke, Symbol \(I\), ist ein Maß für die elektrische Ladung, die pro Sekunde durch einen Leiterquerschnitt hindurchfließt.
- Die Einheit der elektrischen Stromstärke ist das Ampere, Symbol \(\rm{A}\).
Generator- und Motorprinzip
Grundwissen
- Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
- Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld
Grundwissen
- Die Funktionsweise von Generatoren und Elektromotoren sind physikalisch eng verbunden
- Zentral ist bei beiden die Lorentzkraft auf bewegte Ladungen im Magnetfeld
Herleitung der Wellenfunktion
Grundwissen
- Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
- Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)
Grundwissen
- Die Wellenfunktion beschreibt die Ausbreitung einer Welle mathematisch.
- Für eine in positive \(x\)-Richtung laufende Welle gilt: \(y(x;t) = \hat y \cdot \sin \left( {2\pi \cdot \left( {\frac{t}{T} - \frac{x}{\lambda }} \right)} \right)\)
KIRCHHOFFsche Gesetze für Fortgeschrittene
Grundwissen
- Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
- Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
- So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.
Grundwissen
- Die Knotenregel kann auch bei beliebig vielen zu- und abfließenden Strömen genutzt werden.
- Die Maschenregel gilt auch bei mehreren Quellen in einem Stromkreis.
- So lassen sich auch Ströme und Spannungen in sehr komplexen Schaltungen berechnen.
Technik der Dotierung
Grundwissen
- Halbleiter werden meist durch ein Diffusionsverfahren oder durch Implantation (Einschuss) mit Fremdatomen dotiert.
Grundwissen
- Halbleiter werden meist durch ein Diffusionsverfahren oder durch Implantation (Einschuss) mit Fremdatomen dotiert.