Direkt zum Inhalt
Suchergebnisse 31 - 60 von 91

Aktivität eines Präparats

Grundwissen

  • Die Aktivität \(A\) einer radioaktiven Quelle gibt die Anzahl der Zerfälle \(\Delta N\) in der Quelle pro Zeitintervall \(\Delta t\) an.
  • Die Einheit der Aktivität ist Becquerel: \(\left[A\right]=1\,\rm{Bq}\)
  • Zur besseren Vergleichbarkeit wird häufig die spezifische Aktivität einer Probe angegeben, die das Verhältnis von Aktivität zur Masse der Probe beschreibt.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Aktivität \(A\) einer radioaktiven Quelle gibt die Anzahl der Zerfälle \(\Delta N\) in der Quelle pro Zeitintervall \(\Delta t\) an.
  • Die Einheit der Aktivität ist Becquerel: \(\left[A\right]=1\,\rm{Bq}\)
  • Zur besseren Vergleichbarkeit wird häufig die spezifische Aktivität einer Probe angegeben, die das Verhältnis von Aktivität zur Masse der Probe beschreibt.

Zum Artikel Zu den Aufgaben

Überblick über die Strahlungsarten

Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die drei Strahlungsarten unterscheiden sich in vielfältigen Eigenschaften
  • Aber jede der Strahlungsarten kann für den Menschen gefährlich sein

Zum Artikel Zu den Aufgaben

Halbwertszeit

Grundwissen

  • Die Halbwertszeit \(T_{1/2}\) gibt an, nach welcher Zeitspanne sich die Anzahl der radioaktiven Ausgangskerne halbiert hat.
  • Nach einer Halbwertszeit hat sich auch entsprechend die Aktivität \(A\) einer Probe halbiert.
  • Die Halbwertszeiten variieren sehr stark zwischen verschiedenen Isotopen.
  • Es gilt: \(N(t) = {\left( {\frac{1}{2}} \right)^{\frac{t}{{{T_{1/2}}}}}} \cdot N(0)\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Die Halbwertszeit \(T_{1/2}\) gibt an, nach welcher Zeitspanne sich die Anzahl der radioaktiven Ausgangskerne halbiert hat.
  • Nach einer Halbwertszeit hat sich auch entsprechend die Aktivität \(A\) einer Probe halbiert.
  • Die Halbwertszeiten variieren sehr stark zwischen verschiedenen Isotopen.
  • Es gilt: \(N(t) = {\left( {\frac{1}{2}} \right)^{\frac{t}{{{T_{1/2}}}}}} \cdot N(0)\)

Zum Artikel Zu den Aufgaben

Strahlenschutz

Grundwissen

Die 5 "A"s des Strahlenschutzes:

  • Abstand erhöhen!
  • Aufenthaltsdauer verkürzen!
  • Aktivität vermindern!
  • Abschirmung verstärken!
  • Aufnahme in den Körper vermeiden!

Zum Artikel Zu den Aufgaben
Grundwissen

Die 5 "A"s des Strahlenschutzes:

  • Abstand erhöhen!
  • Aufenthaltsdauer verkürzen!
  • Aktivität vermindern!
  • Abschirmung verstärken!
  • Aufnahme in den Körper vermeiden!

Zum Artikel Zu den Aufgaben

Energiebilanz beim Alpha-Zerfall

Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Alpha-Zerfall emittiert der Mutterkern \(\rm{X}\) ein \(\alpha\)-Teilchen (\(\rm{He}\)-Kern). Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(2\), die Massenzahl um \(4\) kleiner als die des Mutterkerns.
  • Die Reaktionsgleichung lautet \(_{Z}^{A}{\rm{X}}\to\;_{Z-2}^{A-4}{\rm{Y}} +\;_{2}^{4}{\rm{He }}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q = \left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)-m_{\rm{A}}\left(_{2}^{4}{\rm{He }} \right) \right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Energiebilanz beim Beta-Minus-Zerfall

Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben
Grundwissen

  • Beim Beta-Minus-Zerfall wandelt sich im Mutterkern \(\rm{X}\) ein Neutron in ein Proton um. Gleichzeitig wird ein \(\beta^-\)-Teilchen (Elektron) und ein Anti-Elektron-Neutrino \(\bar \nu_{\rm{e}}\) emittiert. Die Ordnungszahl des Tochterkerns \(\rm{Y}\) ist um \(1\) größer als die des Mutterkerns, die Massenzahl bleibt gleich.
  • Die Reaktionsgleichung lautet \(_Z^A{\rm{X}}\to\;_{Z+1}^A{\rm{Y}} +\;_{-1}^0{\rm{e^-}}+\;_0^0{\bar \nu_{\rm{e}}}\)
  • Der \(Q\)-Wert berechnet sich mit Atommassen durch \(Q=\left[ m_{\rm{A}}\left( \rm{X} \right)-m_{\rm{A}}\left( \rm{Y} \right)\right] \cdot c^2\)

Zum Artikel Zu den Aufgaben

Kernspaltung

Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Schwere Atomkerne (große Massenzahl \(A\)) können z. B. durch den Beschuss mit langsamen Neutronen in mehrere kleinere Atomkerne gespalten werden.
  • Bei der Spaltreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Spaltung ist kleiner als die Gesamtmasse vor der Spaltung.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernspaltung frei wird.

Zum Artikel Zu den Aufgaben

Kernfusion

Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Zwei leichte Atomkerne können zu einem größeren Kern fusioniert werden, insbesondere Deuterium und Tritium zu Helium.
  • Bei der Fusionsreaktion tritt ein Massendefekt auf: Die Gesamtmasse nach der Fusion sind kleiner als die Gesamtmasse vor der Fusion.
  • Mithilfe eines \(A\)-\(\frac{B}{A}\)-Diagramms kannst du grob abschätzen, wie viel Energie bei einer Kernfusion frei wird.

Zum Artikel Zu den Aufgaben

Alphazerfall und Alphastrahlung

Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel
Grundwissen

  • Bei Alphastrahlung handelt es sich um eine Teilchenstrahlung aus Heliumatomkernen (zwei Protonen und zwei Neutronen).
  • Alphastrahlung hat eine geringe Reichweite und kann leicht abgeschirmt werden.
  • Alphastrahlung besitzt ein hohes Ionisierungsvermögen (ionisiert viele Teilchen in kleinem Raum).

Zum Artikel Zu den Aufgaben

Beta-Minus-Zerfall und Beta-Minus-Strahlung

Grundwissen

  • Bei Beta-Minus-Strahlung handelt es sich um eine Teilchenstrahlung aus Elektronen.
  • Bei einem Beta-Minus-Zerfall wandelt sich im Atomkern ein Neutron in ein Proton und ein Elektron (und ein Elektron-Antineutrino) um.
  • Beta-Minus-Strahlung kann durch dünne Metallplatten gut abgeschirmt werden.

Zum Artikel
Grundwissen

  • Bei Beta-Minus-Strahlung handelt es sich um eine Teilchenstrahlung aus Elektronen.
  • Bei einem Beta-Minus-Zerfall wandelt sich im Atomkern ein Neutron in ein Proton und ein Elektron (und ein Elektron-Antineutrino) um.
  • Beta-Minus-Strahlung kann durch dünne Metallplatten gut abgeschirmt werden.

Zum Artikel Zu den Aufgaben

Gammaübergang und Gammastrahlung

Grundwissen

  • Bei Gammastrahlung handelt es sich um elektromagnetische Strahlung in Form von Gammaquanten.
  • Gammastrahlung entsteht, wenn ein Atomkern von angeregtem in einen energetisch günstigeren Zustand übergeht. Dabei ändern sich die Kennzahlen des Kerns nicht.
  • Gammastrahlung hat eine sehr große Reichweite, durchdringt alle Materialien und kann nur mit sehr dicken Bleischichten wirkungsvoll abgeschirmt werden.

Zum Artikel
Grundwissen

  • Bei Gammastrahlung handelt es sich um elektromagnetische Strahlung in Form von Gammaquanten.
  • Gammastrahlung entsteht, wenn ein Atomkern von angeregtem in einen energetisch günstigeren Zustand übergeht. Dabei ändern sich die Kennzahlen des Kerns nicht.
  • Gammastrahlung hat eine sehr große Reichweite, durchdringt alle Materialien und kann nur mit sehr dicken Bleischichten wirkungsvoll abgeschirmt werden.

Zum Artikel Zu den Aufgaben

Ionisierung durch Strahlung

Grundwissen

  • \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung kann andere Teilchen ionisieren.
  • Das Ionisationsvermögen gibt an, wie viele Teilchen auf einer bestimmten Wegstrecke durch die Strahlung ionisiert werden.
  • Das Ionisationsvermögen von \(\alpha\)-Strahlung ist höher als das von \(\beta\)-Strahlung, das von \(\beta\)- höher als von \(\gamma\)-Strahlung.
  • Durch Ionisationsprozesse schädigt \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung Gewebezellen.

Zum Artikel Zu den Aufgaben
Grundwissen

  • \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung kann andere Teilchen ionisieren.
  • Das Ionisationsvermögen gibt an, wie viele Teilchen auf einer bestimmten Wegstrecke durch die Strahlung ionisiert werden.
  • Das Ionisationsvermögen von \(\alpha\)-Strahlung ist höher als das von \(\beta\)-Strahlung, das von \(\beta\)- höher als von \(\gamma\)-Strahlung.
  • Durch Ionisationsprozesse schädigt \(\alpha\)-, \(\beta\)- und \(\gamma\)-Strahlung Gewebezellen.

Zum Artikel Zu den Aufgaben

Kopplungsparameter

Grundwissen

  • Der Kopplungsparameter bestimmt, wie stark und wie wahrscheinlich eine Wechselwirkung ist.
  • Für jede der vier fundamentalen Wechselwirkungen gibt es einen Kopplungsparameter \(\alpha\).
  • Der Kopplungsparameter der starken Wechselwirkung \(\alpha_{\rm{S}}\) hängt vom Abstand der Elementarteilchen ab und liegt im Bereich von \(0{,}1\) bis \(0{,}5\).
  • Der Kopplungsparameter der schwachen Wechselwirkung ist\({\alpha _{\rm{W}}} \approx \frac{1}{{30}}\) und der elektromagnetischen Wechselwirkung \({\alpha _{\rm{em}}} \approx \frac{1}{{137}}\).

Zum Artikel
Grundwissen

  • Der Kopplungsparameter bestimmt, wie stark und wie wahrscheinlich eine Wechselwirkung ist.
  • Für jede der vier fundamentalen Wechselwirkungen gibt es einen Kopplungsparameter \(\alpha\).
  • Der Kopplungsparameter der starken Wechselwirkung \(\alpha_{\rm{S}}\) hängt vom Abstand der Elementarteilchen ab und liegt im Bereich von \(0{,}1\) bis \(0{,}5\).
  • Der Kopplungsparameter der schwachen Wechselwirkung ist\({\alpha _{\rm{W}}} \approx \frac{1}{{30}}\) und der elektromagnetischen Wechselwirkung \({\alpha _{\rm{em}}} \approx \frac{1}{{137}}\).

Zum Artikel Zu den Aufgaben

Botenteilchen

Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Vermittler der starken Wechselwirkung sind 8 verschiedene Gluonen, die verschiedene Kombinationen an Farbladungen tragen.
  • Vermittler der schwachen Wechselwirkung sind \(W^+\)-, \(W^-\)- und \(Z\)-Bosonen, die eine sehr kurze Lebensdauer und eine sehr geringe Reichweite von ca. \(2\cdot 10^{-18}\,\rm{m}\) haben.
  • Photonen sind die Botenteilchen der elektromagnetischen Wechselwirkung, besitzen keinerlei Ladung und haben daher eine unendliche Reichweite.

Zum Artikel Zu den Aufgaben

Ladungen

Grundwissen

  • Ladungen sind fundamentale und unveränderliche Eigenschaften eines Teilchens, sie können nur bestimmte Werte annehmen (sind gequantelt), bleiben erhalten und bestimmen, ob ein Teilchen einer bestimmten Wechselwirkung unterliegt.
  • Es gibt sechs verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau und die Einordnung der Elementarteilchen geschieht in einem zweidimensionalen Farbgitter.
  • Die schwache Ladung hat das Formelzeichen \(I\) und kann ganzzahlige Vielfache von \(\frac{1}{2}\) als Werte annehmen und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig..
  •  Die Größe "elektrische Ladung" hat ganzzahlige Vielfache von \(\frac{1}{3}\) als Werte und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Ladungen sind fundamentale und unveränderliche Eigenschaften eines Teilchens, sie können nur bestimmte Werte annehmen (sind gequantelt), bleiben erhalten und bestimmen, ob ein Teilchen einer bestimmten Wechselwirkung unterliegt.
  • Es gibt sechs verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau und die Einordnung der Elementarteilchen geschieht in einem zweidimensionalen Farbgitter.
  • Die schwache Ladung hat das Formelzeichen \(I\) und kann ganzzahlige Vielfache von \(\frac{1}{2}\) als Werte annehmen und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig..
  •  Die Größe "elektrische Ladung" hat ganzzahlige Vielfache von \(\frac{1}{3}\) als Werte und in Vielteilchensystemen addieren sich die Ladungen der Elementarteilchen zahlenmäßig.

Zum Artikel Zu den Aufgaben

Wechselwirkungen

Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel
Grundwissen

  • Die starke Wechselwirkung wird von der sog. Farbladung bestimmt und Botenteilchen der starken Wechselwirkung sind die Gluonen.
  • Der schwachen Wechselwirkung unterliegen nur Teilchen mit schwacher Ladung. Botenteilchen sind die W- und Z-Bosonen.
  • Der elektromagnetischen Wechselwirkung unterliegen nur geladene Teilchen. Botenteilchen ist das Photon.

Zum Artikel Zu den Aufgaben

Starke Wechselwirkung

Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel
Grundwissen

  • Der starken Wechselwirkung unterliegen nur Teilchen, die eine Farbladung besitzen, also auf Quarks. Es gibt 6 verschiedene Farbladungen: rot, grün, blau, anti-rot, anti-grün und anti-blau.
  • Die Botenteilchen der starken Wechselwirkung sind die acht Gluonen. Diese tragen selbst unterschiedliche Farbladungen.
  • Es gibt keine freien Quarks, sie finden sich immer in Zweier- oder Dreiergruppen.

Zum Artikel Zu den Aufgaben

Schwache Wechselwirkung

Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Nur Teilchen mit einer von Null verschiedenen schwachen Ladung unterliegen der schwachen Wechselwirkung.
  • Die schwache Wechselwirkung wird durch Absorption und Emission von \(W^+\)-, \(W^-\), und \(Z\)-Bosonen vermittelt.
  • Alle Materieteilchen besitzen eine schwache Ladung von \(I=+\frac{1}{2}\) oder \(I=-\frac{1}{2}\). In ihrer Darstellung ist das Vorzeichen oft über die Ausrichtung der Spitze bzw. Rundung codiert.
  • Von den Botenteilchen haben nur die \(W\)-Bosonen eine schwache Ladung von \(I=\pm 1\).

Zum Artikel Zu den Aufgaben

Elektromagnetische Wechselwirkung

Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel
Grundwissen

  • Nur elektrische geladene Teilchen unterliegen der elektromagnetischen Wechselwirkung, die durch Absorption und Emission von Photonen vermittelt wird.
  • Die elektrische Ladung eines Elementarteilchens kann als Wert nur ganzzahlige Vielfache von \(\frac{1}{3}\) annehmen.
  • Die elektromagnetische Wechselwirkung hat eine unendlich große Reichweite, aber ihre Kraft nimmt quadratisch mit dem Abstand der elektrisch geladenen Teilchen ab.

Zum Artikel Zu den Aufgaben

Absorptionsgesetz, Absorptionskoeffizient und Halbwertsschichtdicke

Grundwissen

  • Für die Zählrate \(R\) von ionisierender Strahlung hinter einem Absorber der Schichtdicke \(d\) gilt bei \(\gamma\)-Strahlung und oft auch bei \(\alpha\)- und \(\beta^-\)-Strahlung \(R(d) = {R_0} \cdot {e^{ - \mu  \cdot d}}\) mit dem Absorptionskoeffizienten \(\mu\).
  • Die Halbwertsschichtdicke \(d_{1/2}\) ist die Schichtdicke des Absorbers, hinter der sich die Zählrate \(R\) halbiert.
  • Zwischen der Absorptionskonstante \(\mu\) und der Halbwertsschichtdicke \({d_{1/2}}\) besteht der Zusammenhang \(\mu  = \frac{{\ln \left( 2 \right)}}{{{d_{1/2}}}}\).

Zum Artikel Zu den Aufgaben
Grundwissen

  • Für die Zählrate \(R\) von ionisierender Strahlung hinter einem Absorber der Schichtdicke \(d\) gilt bei \(\gamma\)-Strahlung und oft auch bei \(\alpha\)- und \(\beta^-\)-Strahlung \(R(d) = {R_0} \cdot {e^{ - \mu  \cdot d}}\) mit dem Absorptionskoeffizienten \(\mu\).
  • Die Halbwertsschichtdicke \(d_{1/2}\) ist die Schichtdicke des Absorbers, hinter der sich die Zählrate \(R\) halbiert.
  • Zwischen der Absorptionskonstante \(\mu\) und der Halbwertsschichtdicke \({d_{1/2}}\) besteht der Zusammenhang \(\mu  = \frac{{\ln \left( 2 \right)}}{{{d_{1/2}}}}\).

Zum Artikel Zu den Aufgaben

Teilchenphysikaspekte in der klassischen Physik

Grundwissen

  • Auch bei Themen der klassischen Physik werden an vielen Stellen Teilchenaspekte deutlich.
  • Beispiele sind die \(\beta\)-Strahlung und das AEgIS-Experiment als Anwendung des waagerechten Wurfs.

Zum Artikel Zu den Aufgaben
Grundwissen

  • Auch bei Themen der klassischen Physik werden an vielen Stellen Teilchenaspekte deutlich.
  • Beispiele sind die \(\beta\)-Strahlung und das AEgIS-Experiment als Anwendung des waagerechten Wurfs.

Zum Artikel Zu den Aufgaben

Plasmaeinschluss durch Magnetfelder

Ausblick
Ausblick

Plasmaeinschluss über die Trägheit

Ausblick
Ausblick

Lawson-Kriterium der Kernfusion

Ausblick
Ausblick

Probleme der Kernenergienutzung

Ausblick
Ausblick