Suchergebnis für:
Gegenüberstellung von Reihen- und Parallelschaltung - interaktive Version
Wellenbad
Joachim Herz Stiftung Abb. 1. Skizze zur Aufgabe.In einem Schwimmbecken ist ein großer Gummiball eingebaut, der sich auf- und ab bewegt und so…
Zur AufgabeJoachim Herz Stiftung Abb. 1. Skizze zur Aufgabe.In einem Schwimmbecken ist ein großer Gummiball eingebaut, der sich auf- und ab bewegt und so…
Zur AufgabeTORRICELLI-Gleichung
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
- Die Austrittsgeschwindigkeit eines Wasserstrahls aus der Öffnung hängt nur vom Füllstand, nicht von seiner Form oder der Größe der Austrittsöffnung ab.
- .Für die Austrittsgeschwindigkeit gilt \(v = \sqrt{2 \cdot g \cdot h}\).
- Der Auftreffpunkt auf dem Boden kann idealisiert als waagerechter Wurf berechnet werden.
Kavitation an der Schiffsschraube
me, CC BY-SA 3.0, via Wikimedia Commons Abb. 1 Durch Kavitation zerstörtes Laufrad einer FRANCIS-TurbineEin großes Problem in technischen…
Zur Aufgabeme, CC BY-SA 3.0, via Wikimedia Commons Abb. 1 Durch Kavitation zerstörtes Laufrad einer FRANCIS-TurbineEin großes Problem in technischen…
Zur AufgabeDruck-Rohrleitung
Ein großes Problem in technischen Anwendungen mit Fluiden stellt die Kavitation dar. Wird ein Fluid so stark beschleunigt, dass der Druck lokal unter…
Zur AufgabeEin großes Problem in technischen Anwendungen mit Fluiden stellt die Kavitation dar. Wird ein Fluid so stark beschleunigt, dass der Druck lokal unter…
Zur AufgabeAm Holzwerk
Am Tor eines Holzwerkes sind die Dichten verschiedener Holzarten für frisch gefällte Bäume angegeben: Fichte:…
Zur AufgabeAm Tor eines Holzwerkes sind die Dichten verschiedener Holzarten für frisch gefällte Bäume angegeben: Fichte:…
Zur AufgabeDruck - Formelumstellung
Um Aufgaben zum Druck zu lösen musst du häufig die Gleichung \({F_{\rm{D}}} = p \cdot A\) nach einer Größe auflösen, die unbekannt ist. Wie du das…
Zur AufgabeUm Aufgaben zum Druck zu lösen musst du häufig die Gleichung \({F_{\rm{D}}} = p \cdot A\) nach einer Größe auflösen, die unbekannt ist. Wie du das…
Zur AufgabeKugelfallviskosimeter
Mit dem Kugelfallviskosimeter kann die Viskosität NEWTONscher Flüssigkeiten oder Gase sehr genau bestimmt werden. Eine Kugel fällt in dem zu…
Zur AufgabeMit dem Kugelfallviskosimeter kann die Viskosität NEWTONscher Flüssigkeiten oder Gase sehr genau bestimmt werden. Eine Kugel fällt in dem zu…
Zur AufgabeOHMsches Gesetz - Formelumstellung
Um Aufgaben zum OHMschen Gesetz zu lösen musst du häufig die Gleichung \(U = R \cdot I\) nach einer Größe, die unbekannt ist, auflösen. Wie du das…
Zur AufgabeUm Aufgaben zum OHMschen Gesetz zu lösen musst du häufig die Gleichung \(U = R \cdot I\) nach einer Größe, die unbekannt ist, auflösen. Wie du das…
Zur AufgabeSchwerdedruck - Formelumstellung
Um Aufgaben zum Schweredruck zu lösen musst du häufig die Gleichung \(p=\rho \cdot g \cdot h\) nach einer Größe, die unbekannt ist, auflösen. Wie du…
Zur AufgabeUm Aufgaben zum Schweredruck zu lösen musst du häufig die Gleichung \(p=\rho \cdot g \cdot h\) nach einer Größe, die unbekannt ist, auflösen. Wie du…
Zur AufgabeDynamischer Auftrieb und \(c_{\rm{A}}\)-Wert
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
- Ein nicht symmetrische bzw. nicht symmetrisch zu seiner Form angeströmter Körper erfährt einen dynamischen Auftrieb \(\vec{F}_{\rm{A}}\)
- Der dynamische Auftrieb entsteht im Zusammenspiel von verschiedenen anderen Effekten
- Es gilt \(F_{\rm{A}} = \frac{1}{2} \cdot c_{\rm{A}} \cdot \rho \cdot A \cdot v^2\), wobei \(A\) die Referenzfläche des Körpers und \(c_{\rm{A}}\) der Auftriebsbeiwert ist.
Golf 7
Beim neuen Golf 7 wird ein \(c_{\rm{w}}\)-Wert von \(0{,}25\) und eine Stirnfläche von \(2{,}19\,\rm{m}^2\) angegeben. Die maximale Leermasse…
Zur AufgabeBeim neuen Golf 7 wird ein \(c_{\rm{w}}\)-Wert von \(0{,}25\) und eine Stirnfläche von \(2{,}19\,\rm{m}^2\) angegeben. Die maximale Leermasse…
Zur AufgabeBRAGG-Gleichung - Formelumstellung
Um Aufgaben zur BRAGG-Gleichung zu lösen musst du häufig die Gleichung \(k \cdot \lambda = 2 \cdot d \cdot \sin\left(\theta_n\right)\) nach einer…
Zur AufgabeUm Aufgaben zur BRAGG-Gleichung zu lösen musst du häufig die Gleichung \(k \cdot \lambda = 2 \cdot d \cdot \sin\left(\theta_n\right)\) nach einer…
Zur AufgabeStrömungswiderstand und \(c_{\rm{w}}\)-Wert
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
- Bewegt sich ein Körper relativ zu einem Fluid so erfährt der Körper eine entgegen der relativen Bewegungsrichtung gerichtete Kraft, den Strömungswiderstand \(\vec F_{\rm{w}}\).
- Für den Strömungswiderstand gilt \(F_{\rm{w}} = \frac{1}{2} \cdot c_{\rm{w}} \cdot \rho \cdot A \cdot v^2\)
- Die Größe \(c_{\rm{w}}\) ist der sog. Widerstandsbeiwert, kurz \(c_{\rm{w}}\)-Wert.
Segelflugzeug
Ein Segelflugzeug hat eine Gleitzahl von \(47\) bei einer Geschwindigkeit von \(100\,\frac{\rm{km}}{\rm{h}}\) und einer Flügelfläche von \(17{,}6…
Zur AufgabeEin Segelflugzeug hat eine Gleitzahl von \(47\) bei einer Geschwindigkeit von \(100\,\frac{\rm{km}}{\rm{h}}\) und einer Flügelfläche von \(17{,}6…
Zur AufgabeKleinflugzeug
Ein Kleinflugzeug hat folgende technische Daten: Tab. 1 Technische Daten eines Kleinflugzeugs Maximale…
Zur AufgabeEin Kleinflugzeug hat folgende technische Daten: Tab. 1 Technische Daten eines Kleinflugzeugs Maximale…
Zur AufgabeDer Mensch als Leiter von Musik
- Demonstration der Leitfähigkeit des menschlichen Körpers
- Thematisierung der Gefahr von Strom für den Menschen
- Demonstration der Leitfähigkeit des menschlichen Körpers
- Thematisierung der Gefahr von Strom für den Menschen
Widerstand, Stromstärke und Spannung an einem ohmschen Bauteil
Durch ein Bauteil, das einen ohmschen Widerstand darstellt, fließt bei einer Spannung von \(24{,}0\,\rm{V}\) ein Strom von…
Zur AufgabeDurch ein Bauteil, das einen ohmschen Widerstand darstellt, fließt bei einer Spannung von \(24{,}0\,\rm{V}\) ein Strom von…
Zur AufgabeTransformator an der Steckdose
Die Primärspule eines idealen Transformators hat \(N_{\rm{P}}=500\) Windungen, die Sekundärspule nur \(N_{\rm{S}}=250\) Windungen. Du schließt den…
Zur AufgabeDie Primärspule eines idealen Transformators hat \(N_{\rm{P}}=500\) Windungen, die Sekundärspule nur \(N_{\rm{S}}=250\) Windungen. Du schließt den…
Zur AufgabeEinfache Parallelschaltungen
a) In einer Parallelschaltung mit zwei Widerständen beträgt \(𝑅_{1}=20\,\Omega\) und…
Zur Aufgabea) In einer Parallelschaltung mit zwei Widerständen beträgt \(𝑅_{1}=20\,\Omega\) und…
Zur AufgabeHall-Effekt (Grundversuch)
- Qualitativer Nachweis des Auftretens des Hall-Effektes
- Nachweis von \(U_{\rm{H}} \sim I_{\rm{quer}}\)
- Qualitativer Nachweis des Auftretens des Hall-Effektes
- Nachweis von \(U_{\rm{H}} \sim I_{\rm{quer}}\)
Lichtgeschwindigkeit in Wasser
- Nachweis, dass sich die Lichtgeschwindigkeit in Wasser und in Luft unterscheidet
- Bestimmung der Lichtgeschwindigkeit in Wasser
- Nachweis, dass sich die Lichtgeschwindigkeit in Wasser und in Luft unterscheidet
- Bestimmung der Lichtgeschwindigkeit in Wasser
Bestimmungen am Massenspektrometer
Simulation eines Massenspektrometers nach Bainbridge
Zur AufgabeSimulation eines Massenspektrometers nach Bainbridge
Zur AufgabeGefahr durch Strom und Körperwiderstand
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
- Strom kann für den Menschen schon ab ca. \(30\,\rm{mA}\) tödlich sein.
- Wechselstrom ist gefährlicher als Gleichstrom.
- Der Körperwiderstand liegt mit Übergangswiderständen der Haut im Bereich von \(1\)-\(5\,\rm{k}\Omega\), je nach Weg durch den Körper.
Baue eine Querflöte
- Bau einer funktionierenden Querflöte als Anwendung von stehenden Wellen
a) Joachim Herz Stiftung Abb. 1…
Zur AufgabeZerfallsgesetz, Zerfallskonstante und Halbwertszeit
- Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
- Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda \cdot t}} = \lambda \cdot {N_0} \cdot {e^{ - \lambda \cdot t}}\).
- Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
- Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).
- Für den Bestand \(N\) der zum Zeitpunkt \(t\) noch nicht zerfallenden Atomkerne gilt \(N(t) = {N_0} \cdot {e^{ - \lambda \cdot t}}\) mit der Zerfallskonstanten \(\lambda\).
- Für die Aktivität \(A\) zum Zeitpunkt \(t\) gilt \(A(t) = {A_0} \cdot {e^{ - \lambda \cdot t}} = \lambda \cdot {N_0} \cdot {e^{ - \lambda \cdot t}}\).
- Die Halbwertszeit \(T_{1/2}\) ist die Zeitspanne, in der sich die Anzahl der nicht zerfallenen Atomkerne eines radioaktiven Präparats halbiert.
- Zwischen der Zerfallskonstanten \(\lambda\) und der Halbwertszeit \({T_{1/2}}\) besteht der Zusammenhang \(\lambda = \frac{{\ln \left( 2 \right)}}{{{T_{1/2}}}}\).