Direkt zum Inhalt

Aufgabe

Bewegte Maßstäbe

Schwierigkeitsgrad: mittelschwere Aufgabe

a)Mit welcher Geschwindigkeit \(v\) müssen sich zwei Inertialsystem S und S' gegeneinander bewegen, damit ein im S-System ruhender "Maßstab" von der Länge \(450\rm{m}\) vom S'-System aus beurteilt die Länge \(360\rm{m}\) besitzt?

b)Wie lange dauert das Vorüberziehen des Maßstabs, vom S'-System aus beurteilt?

c)Ein Ende des Maßstabs befinde sich im Ursprung des A-Systems, das andere bei \(x = 450\rm{m}\).

Skizzieren Sie in geeignetem Maßstab das (t'; x')-Diagramm mit den Weltlinien der beiden Enden des Maßstabs. Für die Lösung dieser Teilaufgabe ist das Studium der Minkowski-Diagramme ratsam.

Lösung einblendenLösung verstecken Lösung einblendenLösung verstecken

a)\(l\): Länge des Maßstabs im S-System;    (l\;'\): Länge des Maßstabs im S'-System; Auflösen der Beziehung über die Längenkontraktion nach v und Einsetzen der gegebenen Werte liefert\[\begin{array}{l}l\;' = l \cdot \sqrt {1 - {{\left( {\frac{v}{c}} \right)}^2}}  \Rightarrow {\left( {\frac{{l\;'}}{l}} \right)^2} = 1 - {\left( {\frac{v}{c}} \right)^2} \Rightarrow {\left( {\frac{v}{c}} \right)^2} = 1 - {\left( {\frac{{l\;'}}{l}} \right)^2} \Rightarrow v = \sqrt {1 - {{\left( {\frac{{l\;'}}{l}} \right)}^2}}  \cdot c\\ \Rightarrow v = \sqrt {1 - {{\left( {\frac{{360{\rm{m}}}}{{450{\rm{m}}}}} \right)}^2}}  \cdot c = \frac{3}{5} \cdot c = 0,60 \cdot c\end{array}\]

Abb. 1 Maßstab in einem zu einem ruhenden Bezugssystem bewegten Bezugssystem

Blindtext

b)

\(\Delta t\;'\) ist die Zeit, welche im S'-System verstreicht, bis der Maßstab an einer Uhr vorbeigezogen ist:\[\Delta t\;' = \frac{{l\;'}}{v} \Rightarrow \Delta t' = \frac{{360{\rm{m}}}}{{0,60 \cdot 3,0 \cdot {{10}^8}\frac{{\rm{m}}}{{\rm{s}}}}} = 2,0{\rm{\mu s}}\]

c)

Im S'-System wird die Länge des Maßstabs zu \({l\;' = 360{\rm{m}}}\) festgestellt. Dies ist ein Länge von \(\frac{{360}}{{3,0 \cdot {{10}^8}}}{\rm{Ls}} = 1,2\,\,{\rm{L\mu s}}\).

Abb. 2

Die Geschwindigkeit des Maßstabs im S'-System ist \(0,60 \cdot c\).